Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Microb Sci ; 5: 100198, 2023.
Article in English | MEDLINE | ID: mdl-37675244

ABSTRACT

Organisms in the genus Anaplasma are obligate intracellular alphaproteobacteria. Bovine anaplasmosis, predominantly caused by Anaplasma marginale, is the most prevalent tick-borne disease (TBD) of cattle worldwide. Other Anaplasma species are known to cause disease; these include A. ovis, A. platys in dogs, A. capra in goats and humans, and A. phagocytophilum in humans. The rapid advancement of next-generation sequencing technologies has led to the discovery of many novel sequences ascribed to the genus Anaplasma, with over 20 putative new species being proposed since the last formal organization of the genus. Most 16S rRNA gene surveys for Anaplasma were conducted on cattle and to a lesser extent on rodents, dogs, and ticks. Little is known about the occurrence, diversity, or impact of Anaplasma species circulating in wildlife species. Therefore, we conducted a 16S rRNA gene survey with the goal of identifying Anaplasma species in a variety of wildlife species in the Kruger National Park and neighbouring game reserves, using an unbiased 16S rRNA gene microbiome approach. An Anaplasma/Ehrlichia-group specific quantitative real-time PCR (qPCR) assay revealed the presence of Anaplasma and/or Ehrlichia species in 70.0% (21/30) of African buffalo, 86.7% (26/30) of impala, 36.7% (11/30) of greater kudu, 3.2% (1/31) of African wild dog, 40.6% (13/32) of Burchell's zebra, 43.3% (13/30) of warthog, 22.6% (7/31) of spotted hyena, 40.0% (12/30) of leopard, 17.6% (6/34) of lion, 16.7% (5/30) of African elephant and 8.6% (3/35) of white rhinoceros samples. Microbiome sequencing data from the qPCR positive samples revealed four 16S rRNA sequences identical to previously published Anaplasma sequences, as well as nine novel Anaplasma 16S genotypes. Our results reveal a greater diversity of putative Anaplasma species circulating in wildlife than currently classified within the genus. Our findings highlight a potential expansion of the Anaplasma host range and the need for more genetic information from other important genes or genome sequencing of putative novel species for correct classification and further assessment of their occurrence in wildlife, livestock and companion animals.

2.
Microorganisms ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838430

ABSTRACT

Bovine anaplasmosis, caused by Anaplasma marginale, is one of the most important tick-borne diseases of cattle. Anaplasma marginale is known to be present in the Mnisi community, Mpumalanga Province, with frequent cases of anaplasmosis reported. This study investigated the infection dynamics in calves (n = 10) in two habitats in the study area over 12 months. A duplex real-time PCR assay targeting the msp1ß gene of A. marginale and the groEL gene of A. centrale confirmed the presence of A. marginale in five calves in a peri-urban area from the first month, but in only two calves at the wildlife-livestock interface and only after six months. These results were confirmed by 16S rRNA microbiome analysis. Over 50 A. marginale msp1α genotypes were detected in the calves along with five novel Msp1a repeats. Calves in the peri-urban area were more likely to be infected with A. marginale than calves in the wildlife-livestock interface. Cattle management, acaricide treatment, and cattle density could explain differences in infection prevalence in the two areas. Our results revealed that most calves were superinfected by distinct A. marginale strains within the study period, indicating continuous challenge with multiple strains that should lead to robust immunity in the calves and endemic stability in the area.

3.
Ticks Tick Borne Dis ; 14(2): 102084, 2023 03.
Article in English | MEDLINE | ID: mdl-36427476

ABSTRACT

Babesia bovis is a causal agent of bovine babesiosis, a disease which leads to mortality and morbidity and impacts the cattle industry worldwide. We amplified, cloned and sequenced the B. bovis merozoite surface antigen-2b (msa-2b) gene (∼940 bp) and the near full-length 18S rRNA gene (∼1600 bp) from cattle samples from South Africa and Mozambique to determine sequence variation between B. bovis parasites in the region. A TaqMan quantitative real-time PCR (qPCR) assay (18S rRNA gene) was optimised for the detection of B. bovis and estimation of parasitaemia in field samples from cattle from southern Africa. Phylogenetic analysis grouped the Msa-2b sequences in six clades and these were 59.7 to 99.6% identical to reference sequences. Sequence variation amongst B. bovis 18S rRNA sequences was found at 2 to 36 positions, and the sequences were 97 to 99% identical to published sequences. Mismatches between the B. bovis 18S rRNA sequences and a previously published qPCR forward primer (BoF) were observed; therefore, we developed a new forward primer (BoF2), and optimised the qPCR assay. Six 10-fold dilution series of B. bovis infected erythrocytes (2 × 108 to 2 × 103 infected red blood cells [iRBC]/ml) were analysed in triplicate in each of six separate qPCR runs, to determine the efficiency of the assay. The qPCR assay amplified the B. bovis 18S rRNA gene with 92.0 to 94.9% efficiency. The detection limit of the qPCR assay was approximately 6 iRBCs/µl. The performance of the optimised assay to diagnose B. bovis in field samples was assessed by testing DNA from 222 field samples of cattle from South Africa and Mozambique using three methods: the optimised qPCR assay, the reverse line blot (RLB) hybridisation assay, and the previously published qPCR assay. The detection rate of B. bovis using the optimised qPCR assay (31.1%, 69/222) was significantly higher (p<0.001) than both that using RLB (20.7%, 46/222) and the previously published qPCR assay (5.4%; 12/222). The B. bovis parasitaemia in samples from infected cattle ranged from 6 iRBCs/µl to 101,852 iRBCs/µl of blood. Our study revealed marked sequence variation between B. bovis parasites from southern Africa. The optimised qPCR assay will be useful in epidemiological studies and clinical diagnosis of B. bovis in southern Africa, and can be used to determine parasitaemia and potential carrier status in cattle populations, which is essential in the control of babesiosis.


Subject(s)
Babesia bovis , Babesiosis , Cattle Diseases , Animals , Cattle , Babesia bovis/genetics , Babesiosis/diagnosis , Babesiosis/epidemiology , Babesiosis/parasitology , Phylogeny , RNA, Ribosomal, 18S/genetics , Genetic Variation , Africa, Southern/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Real-Time Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...