Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 54(2): 90, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35133512

ABSTRACT

Imputation may be used to rescue genomic data from animals that would otherwise be eliminated due to a lower than desired call rate. The aim of this study was to compare the accuracy of genotype imputation for Afrikaner, Brahman, and Brangus cattle of South Africa using within- and multiple-breed reference populations. A total of 373, 309, and 101 Afrikaner, Brahman, and Brangus cattle, respectively, were genotyped using the GeneSeek Genomic Profiler 150 K panel that contained 141,746 markers. Markers with MAF ≤ 0.02 and call rates ≤ 0.95 or that deviated from Hardy Weinberg Equilibrium frequency with a probability of ≤ 0.0001 were excluded from the data as were animals with a call rate ≤ 0.90. The remaining data included 99,086 SNPs and 360 Afrikaner, 75,291 SNPs and 288 animals Brahman, and 97,897 SNPs and 99 Brangus animals. A total of 7986, 7002, and 7000 SNP from 50 Afrikaner and Brahman and 30 Brangus cattle, respectively, were masked and then imputed using BEAGLE v3 and FImpute v2. The within-breed imputation yielded accuracies ranging from 89.9 to 96.6% for the three breeds. The multiple-breed imputation yielded corresponding accuracies from 69.21 to 88.35%. The results showed that population homogeneity and numerical representation for within and across breed strategies, respectively, are crucial components for improving imputation accuracies.


Subject(s)
Cattle , Genome , Genotype , Animals , Breeding , Cattle/genetics , Genomics , Polymorphism, Single Nucleotide , South Africa
2.
J Dairy Sci ; 97(2): 1117-27, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342683

ABSTRACT

The observed low accuracy of genomic selection in multibreed and admixed populations results from insufficient linkage disequilibrium between markers and trait loci. Failure to remove variation due to the population structure may also hamper the prediction accuracy. We verified if accounting for breed origin of alleles in the calculation of genomic relationships would improve the prediction accuracy in an admixed population. Individual breed proportions derived from the pedigree were used to estimate breed-wise allele frequencies (AF). Breed-wise and across-breed AF were estimated from the currently genotyped population and also in the base population. Genomic relationship matrices (G) were subsequently calculated using across-breed (GAB) and breed-wise (GBW) AF estimated in the currently genotyped and also in the base population. Unified relationship matrices were derived by combining different G with pedigree relationships in the evaluation of genomic estimated breeding values (GEBV) for genotyped and ungenotyped animals. The validation reliabilities and inflation of GEBV were assessed by a linear regression of deregressed breeding value (deregressed proofs) on GEBV, weighted by the reliability of deregressed proofs. The regression coefficients (b1) from GAB ranged from 0.76 for milk to 0.90 for protein. Corresponding b1 terms from GBW ranged from 0.72 to 0.88. The validation reliabilities across 4 evaluations with different G were generally 36, 40, and 46% for milk, protein, and fat, respectively. Unexpectedly, validation reliabilities were generally similar across different evaluations, irrespective of AF used to compute G. Thus, although accounting for the population structure in GBW tends to simplify the blending of genomic- and pedigree-based relationships, it appeared to have little effect on the validation reliabilities.


Subject(s)
Cattle/genetics , Gene Frequency , Genome/genetics , Genomics/methods , Milk , Models, Genetic , Animals , Breeding , Genotype , Linkage Disequilibrium , Pedigree , Phenotype , Reproducibility of Results
3.
J Dairy Sci ; 96(8): 5364-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23769355

ABSTRACT

Different approaches of calculating genomic measures of relationship were explored and compared with pedigree relationships (A) within and across base breeds in a crossbreed population, using genotypes for 38,194 loci of 4,106 Nordic Red dairy cattle. Four genomic relationship matrices (G) were calculated using either observed allele frequencies (AF) across breeds or within-breed AF. The G matrices were compared separately when the AF were estimated in the observed and in the base population. Breedwise AF in the current and base population were estimated using linear regression models of individual genotypes on breed composition. Different G matrices were further used to predict direct estimated genomic values using a genomic BLUP model. Higher variability existed in the diagonal elements of G across breeds (standard deviation=0.06, on average) compared with A (0.01). The use of simple observed AF across base breeds to compute G increased coefficients for individuals in distantly related populations. Estimated breedwise AF reduced differences in coefficients similarly within and across populations. The variability of the current adjusted G matrix decreased from 0.055 to 0.035 when breedwise AF were estimated from the base breed population. The direct estimated genomic values and their validation reliabilities were, however, unaffected by AF used to compute G when estimated with a genomic BLUP model, due to inclusion of breed means in the model. In multibreed populations, G adjusted with breedwise AF from the founder population may provide more consistency among relationship coefficients between genotyped and ungenotyped individuals in an across-breed single-step evaluation.


Subject(s)
Cattle/genetics , Gene Frequency/genetics , Animals , Breeding , Genetic Loci/genetics , Genotype , Models, Genetic , Pedigree , Species Specificity
4.
J Anim Breed Genet ; 130(1): 10-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23317061

ABSTRACT

The current study evaluates reliability of genomic predictions in selection candidates using multi-trait random regression model, which accounts for interactions between marker effects and breed of origin in the Nordic Red dairy cattle (RDC). The population structure of the RDC is admixed. Data consisted of individual animal breed proportions calculated from the full pedigree, deregressed proofs (DRP) of published estimated breeding values (EBV) for yield traits and genotypic data for 37,595 single nucleotide polymorphic markers. The analysed data included 3330 bulls in the reference population and 812 bulls that were used for validation. Direct genomic breeding values (DGV) were estimated using the model under study, which accounts for breed effects and also with GBLUP, which assume uniform population. Validation reliability was calculated as a coefficient of determination from weighted regression of DRP on DGV (rDRP,DGV 2), scaled by the mean reliability of DRP. Using the breed-specific model increased the reliability of DGV by 2 and 3% for milk and protein, respectively, when compared to homogeneous population GBLUP. The exception was for fat, where there was no gain in reliability. Estimated validation reliabilities were low for milk (0.32) and protein (0.32) and slightly higher (0.42) for fat.


Subject(s)
Breeding , Genetics, Population , Regression Analysis , Selection, Genetic , Animals , Cattle , Genotyping Techniques , High-Throughput Screening Assays , Milk/physiology , Models, Theoretical , Pedigree , Polymorphism, Single Nucleotide/genetics
5.
J Anim Breed Genet ; 127(5): 348-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20831558

ABSTRACT

High levels of inbreeding in East African dairy cattle are a potential concern because of use of a limited range of imported germplasm coupled with strong selection, especially by disease, and sparse performance recording. To address this, genetic relationships and breed composition in an admixed population of Kenyan dairy cattle were estimated by means of a 50K SNP scan. Genomic DNA from 3 worldwide Holstein and 20 Kenyan bulls, 71 putative cow-calf pairs, 25 cows from a large ranch and 5 other Kenyan animals were genotyped for 37 238 informative SNPs. Sires were predicted and 89% of putative dam-calf relationships were supported by genotype data. Animals were clustered with the HapMap population using Structure software to assess breed composition. Cows from a large ranch primarily clustered with Holsteins, while animals from smaller farms were generally crosses between Holstein and Guernsey. Coefficients of relatedness were estimated and showed evidence of heavy use of one AI bull. We conclude that little native germplasm exists within the genotyped populations and mostly European ancestry remains.


Subject(s)
Breeding , Cattle/genetics , Pedigree , Polymorphism, Single Nucleotide , Animal Husbandry , Animals , Female , Genotype , Kenya , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...