Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(15): 5701-5714, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35377620

ABSTRACT

A one-pot reaction of a copper source (metallic powder Cu0 or Cu2+ salts) and bpy (bpy = 2,2'-bipyridine) in the presence of (NH4)2HPO4 and (NH4)6Mo7O24·4H2O yields heterometallic hybrid compounds of the general type {[Cu(bpy)n(H2O)m]p[P2MoxOy]}. The structures exhibit a number of phosphomolybdate POMs including not only a common Strandberg anion [P2Mo5O23]6- but also its unprecedented bi- and trilacunary derivatives [P2Mo3O18]8- and [P2Mo2O15]8-. The structural determinants including the metal source (copper powder vs copper salts), counterion of the salts, and stoichiometry of the reagents were examined. An ex situ EPR study revealed the formation of different CuII complexes in the reaction mixture depending on the copper precursor. The obtained compounds have been found to possess selectivity toward the sorption of methylene blue in a mixture of organic dyes. DC magnetic measurements of 1-3 indicate rather strong antiferromagnetic metal-metal exchange interactions. Compound 1 exhibits field-induced slow magnetic relaxation in AC magnetic measurements, which is a rarely observed phenomenon among Cu(II) complexes.

2.
RSC Adv ; 11(51): 32119-32125, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495520

ABSTRACT

Herein, we report on a new hybrid compound (NH4){[Cu(dien)(H2O)2]2[ß-VMo7O26]}·1.5H2O (1), where dien = diethylenetriamine, containing an extremely rare mixed-metal pseudo-octamolybdate cluster. An ex situ EPR spectroscopy provided insights into the formation of paramagnetic species in reaction mixture and in solution of 1. The magneto-structural correlations revealed weak antiferromagnetic exchange interactions between the [Cu(dien)]2+ cations transmitted by intermolecular pathways. The cyclic voltammetry showed the one-electron process associated with the Cu3+/Cu2+ oxidation followed by the multi-electron catalytic wave due to water oxidation with a faradaic yield of 86%. The title compound was thus employed in homogeneous water oxidation catalysis using tris(bipyridine)ruthenium photosensitizer. At pH 8.0, efficiency of the catalytic system attained 0.19 turnovers per second supported by the relatively mild water oxidation overpotential of 0.54 V.

3.
ChemSusChem ; 9(20): 2957-2966, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27689346

ABSTRACT

The heterometallic complexes (NH4 )2 [Co(H2 O)6 ]2 [V10 O28 ]⋅4 H2 O (1) and (NH4 )2 [Co(H2 O)5 (ß-HAla)]2 [V10 O28 ]⋅4 H2 O (2) have been synthesized and used for the preparation of mixed oxides as catalysts for water oxidation. Thermal decomposition of 1 and 2 at relatively low temperatures (<500 °C) leads to the formation of the solid mixed oxides CoV2 O6 /V2 O5 (3) and Co2 V2 O7 /V2 O5 (4). The complexes (1, 2) and heterogeneous materials (3, 4) act as catalysts for photoinduced water oxidation. A modification of the thermal decomposition procedure allowed the deposition of mixed metal oxides (MMO) on a mesoporous TiO2 film. The electrodes containing Co/V MMOs in TiO2 films were used for electrocatalytic water oxidation and showed good stability and sustained anodic currents of about 5 mA cm-2 at 1.72 V versus relative hydrogen electrode (RHE). This method of functionalizing TiO2 films with MMOs at relatively low temperatures (<500 °C) can be used to produce other oxides with different functionality for applications in, for example, artificial photosynthesis.


Subject(s)
Cobalt/chemistry , Light , Oxides/chemistry , Vanadium/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Oxidation-Reduction , Powder Diffraction , Thermogravimetry
4.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 4): m147-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24826106

ABSTRACT

The title complex, [CuCl(C12H8N2)2][Mn(C7H3NO4)Cl(C12H8N2)]·CH3OH, consists of discrete [CuCl(phen)2](+) cations (phen is 1,10-phenanthroline), [MnCl(pydc)(phen)](-) anions (H2pydc is 2,6-pyridine-2,6-di-carb-oxy-lic acid) and one methanol solvent mol-ecule of crystallization per asymmetric unit. It should be noted, that a solvent-masking procedure as implemented in OLEX2 [Dolomanov et al. (2009). J. Appl. Cryst. 42, 339-341 ▶] was used to remove the electronic contribution from one disordered solvent molecule, presumably methanol. Only the atoms used in the refined model are reported in chemical formula and related values. The Cu(II) ion is five-coordinated by two phenanthroline ligands and one chloride ion in a distorted trigonal-bipyramidal geometry. The dihedral angle between the phen ligands is 65.21 (5)°. The Mn(II) ion is six-coordinated by one Cl atom, two N atoms from a phen ligand, as well one N atom and two O atoms from pydc in a distorted octa-hedral coordination geometry, with cis angles ranging from 72.00 (8) to 122.07 (8)° and trans angles ranging from 143.98 (8) to 163.15 (6)°. In the crystal, C-H⋯O, O-H⋯O and C-H⋯Cl hydrogen bonds, cation-anion π-π inter-actions between the phen ring systems with centroid-centroid distances in the range 3.881 (34)-4.123 (36) Å, as well as cation-cation, anion-anion π-π inter-actions between the phen rings with centroid-centroid distances in the range 3.763 (4)-3.99 (5) Šand pydc rings with centroid-centroid distances 3.52 (5) Šlink the various components.

5.
Inorg Chem ; 47(11): 4554-63, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18459765

ABSTRACT

Two heterometallic polymers containing cations [Cu(en)2]2+ and either the [Mn(mal)2(H2O)2]2- (1) or [Mn2(succ)2Cl2]n2n- (2) anions (mal=malonate and succ=succinate) were investigated by X-ray crystallography, high-field electron paramagnetic resonance (EPR) spectroscopy, and magnetic susceptibility measurements. Magnetic susceptibility and EPR spectra characteristic of antiferromagnetically coupled Mn2+-Mn2+ pairs were observed in 2, and the exchange integral J=31 cm(-1) (H=JS1S2) as well as the zero-field-splitting parameter D=-3.046 cm(-1) in the triplet state of the dimanganese entity was determined.

6.
Inorg Chem ; 43(24): 7868-76, 2004 Nov 29.
Article in English | MEDLINE | ID: mdl-15554652

ABSTRACT

The three novel heterotrimetallic complexes [Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2(NCS)2 (1), [Ni(H2L)2][CuCo(L)2(H2L)(NCS)]2Br2.2H2O (2), and [CuCoCd(H2L)2(L)2(NCS)Br2].CH3OH (3) have been prepared using zerovalent copper; cobalt thiocyanate; nickel thiocyanate (1), nickel bromide (2), or cadmium bromide (3); and methanol solutions of diethanolamine in air. The most prominent feature of the structures of 1 and 2 is the formation of the "pentanuclear"aggregate [[Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2]2+ made up of two neutral [CoCu(L)2(H2L)(NCS)] units and the previously unknown cation [Ni(H2L)2]2+ "glued together" by strong complementary hydrogen bonds. With Cd2+ instead of Ni2+, a different structure is obtained: the [CoCu(L)2(H2L)(NCS)] unit is now linked to the Cd center through coordination of the oxygens of L groups on the Co atom to form the discrete heterotrimetallic molecular species 3. Cryomagnetic measurements of the compounds show that, in all cases, the magnetic behavior is paramagnetic; the polycrystalline EPR spectra contain signals due to monomeric copper species only. At the same time, the EPR spectra of frozen DMF and methanol solutions of 1-3 reveal the presence of triplet-state species that can be generated only by a coupling of the Cu2+ centers within a dimer. The species responsible for the appearance of transitions within the triplet state are thought to be Cu(II) dimeric centers formed by aggregation of two [CuCo(H2L)(L)2] fragments of 1-3 present in solution. The residual monomeric spectra in the g approximately 2 region are indicative of the existence of an equilibrium in solution between the dimeric and monomeric Cu(II) centers in aggregated and free [CuCo(H2L)(L)2] fragments, respectively, with varying degrees of stability. The fragmentation process of 1-3 in solution was screened by electrospray ionization mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...