Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(19): 11388-11397, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423619

ABSTRACT

This study investigated the removal of nickel(ii) ions by using two sizes of graphene oxide nanoparticles (GO - 450 nm and GO - 200 nm). The thickness and lateral sheet dimensions of GO are considered to be an important adsorbent and promising method for sufficient removal of metals like nickel, lead, copper, etc. The graphite oxide was prepared by oxidation-reduction reaction (Hummers method), and the final product was labelled as GO - 450 nm. A tip sonicator was used to reduce the size of particles to 200 nm under controlled conditions (time and power of sonication). FTIR spectroscopy shows that both sizes of GO particles contain several types of oxygen groups distributed onto the surface of GO particles. Scanning electron microscopy (SEM) and the statistical analysis confirmed the formation of these two sizes of GO particles. The GO - 200 nm performed better removal of Ni(ii) compared with GO - 450 nm, due to more surfaces being available. The adsorption capacity of GO particles increased drastically from 45 mg g-1 to 75 mg g-1 for GO - 450 nm and GO - 200 nm respectively, these values were carried out after 2 h of incubation. The kinetics of adsorption and several parameters like initial concentration at equilibrium, pH, temperature, and adsorbent dose are controlled and studied by using UV-visible spectroscopy. The results indicated a significant potential of GO - 200 nm as an adsorbent for Ni(ii) ion removal. An additional experiment was performed to estimate the surface area of GO - 450 nm and GO - 200 nm, the results show that the surface areas of GO - 450 nm and GO - 200 nm are 747.8 m2 g-1 and 1052.2 m2 g-1 respectively.

2.
Biosci Rep ; 40(9)2020 09 30.
Article in English | MEDLINE | ID: mdl-32914839

ABSTRACT

Chalcones and their derivatives are becoming increasingly popular due to their various pharmacological effects. Chalcone molecules may be extracted from natural resources, entirely synthesised, or biosynthesised by modifying the natural ones. In the present study, five pyrazole-based adamantyl heterocyclic compounds were synthesised by condensation of 1-adamantyl chalcone with substituted phenylhydrazine. The products were characterised by using ¹H NMR, ¹³C NMR and FT-IR spectroscopy. The microbiological activity of these compounds was investigated against bacteria and fungi. The new compounds showed good to moderate activity against the microbial species used for screening. All developed molecules showed antibacterial activity against Gram-negative and Gram-positive. These molecules showed antifungal activities against Fusarium oxysporum fungus and in a dose-dependent manner, apart from RS-1 molecules which showed compromised antifungal activity and even at a high dose.


Subject(s)
Adamantane/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chalcones/pharmacology , Adamantane/analogs & derivatives , Adamantane/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Chalcones/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemistry , Pyrazolones/chemistry , Structure-Activity Relationship
3.
Pharmaceuticals (Basel) ; 12(2)2019 May 18.
Article in English | MEDLINE | ID: mdl-31109098

ABSTRACT

Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.

4.
Eur J Pharm Biopharm ; 122: 176-185, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29129733

ABSTRACT

Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ±â€¯0.6 and 18.4 ±â€¯0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ±â€¯0.7 and 22.9 ±â€¯1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.


Subject(s)
Catechin/chemistry , Dextrans/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Neuroblastoma/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Drug Synergism , Humans
5.
Pharm Res ; 32(6): 2132-43, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25537340

ABSTRACT

PURPOSE: Preparation of Nanographene oxide (NGO) - Gelatin hybrids for efficient treatment of Neuroblastoma. METHODS: Nanohybrids were prepared via non-covalent interactions. Spectroscopic tools have been used to discriminate the chemical states of NGO prior and after gelatin coating, with UV visible spectroscopy revealing the maximum binding capacity of gelatin to NGO. Raman and X-ray photoelectron spectroscopy (XPS) demonstrated NGO and Gelatin_NGO nanohybrids through a new chemical environments produced after noncovalent interaction. Microscopic analyses, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to estimate the thickness of samples and the lateral width in the nanoscale, respectively. RESULTS: The cell viability assay validated Gelatin_NGO nanohybrids as a useful nanocarrier for Carboplatin (CP) release and delivery, without obvious signs of toxicity. The nano-sized NGO (200 nm and 300 nm) did not enable CP to kill the cancer cells efficiently, whilst the CP loaded Gel_NGO 100 nm resulted in a synergistic activity through increasing the local concentration of CP inside the cancer cells. CONCLUSIONS: The nanohybrids provoked high stability and dispersibility in physiological media, as well as enhanced the anticancer activity of the chemotherapy agent Carboplatin (CP) in human neuroblastoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carboplatin/pharmacology , Drug Carriers , Gelatin/chemistry , Graphite/chemistry , Nanoparticles , Neuroblastoma/drug therapy , Oxides/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Carboplatin/administration & dosage , Carboplatin/chemistry , Carboplatin/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanomedicine , Neuroblastoma/metabolism , Neuroblastoma/pathology , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Technology, Pharmaceutical/methods
6.
J Mater Chem B ; 1(44): 6107-6114, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-32260995

ABSTRACT

Nanographene oxides (NGO) with well-defined sizes were produced from graphite via chemical exfoliation and separated into three different size distributions (300 nm, 200 nm, and 100 nm) using intense sonication and sucrose density gradient centrifugation. Prior to carboplatin (CP) loading, the NGO was functionalized with zero generation polyamidoamide (PAMAM) which renders improved dispersibility and stability of the nanocarrier platform in physiological media. Cell viability tests were conducted on pristine NGO samples with average widths of 200 nm and 300 nm that showed a cytotoxic effect on HeLa cancer cells and mesenchymal stem cells at low (50 µg ml-1) and high (100 µg ml-1) concentrations, while the pristine NGO sample with an average width of 100 nm revealed no significant cytotoxicity at 50 µg ml-1, and only recorded a 10% level at 100 µg ml-1. After functionalization with PAMAM, the carrier was found to be able to deliver carboplatin to the cancer cells, by enhancing the drug anticancer efficiency. Moreover, the carboplatin loaded NGO carrier shows no significant effect on the viability of mesenchymal stem cells (hMSCs) even at high concentration (100 µg ml-1).

7.
ACS Nano ; 6(12): 10825-34, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23186015

ABSTRACT

Our understanding of the catalyst-free growth of single-walled carbon nanotubes by chemical vapor deposition is limited. Toward improving our knowledge base, we conducted systematic investigations into the initial preparation of C(60) fullerenes as nucleation precursors for single-wall and even double-wall carbon nanotube fabrication. The role of the dispersing media is shown to be crucial and is related to the initial fullerene cluster size. Oxygen-based groups, in particular, epoxy groups, are shown to be vital prior to actual growth. Moreover, the presence of oxygen groups during the growth phase is necessary for tube development. We also demonstrate the possibility of fabricating the tubes in crossbar configurations with bespoke crossing angles in a single synthesis step, unlike other routes which require at least two synthesis steps. The systematic studies significantly advance our understanding of the growth mechanisms involved in all-carbon catalyst-free growth of single- and double-walled carbon nanotubes.


Subject(s)
Fullerenes/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...