Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Trials ; 24(1): 132, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814310

ABSTRACT

BACKGROUND: Deep inspiration breath hold (DIBH) reduces radiotherapy cardiac dose for left-sided breast cancer patients. The primary aim of the BRAVEHeart (Breast Radiotherapy Audio Visual Enhancement for sparing the Heart) trial is to assess the accuracy and usability of a novel device, Breathe Well, for DIBH guidance for left-sided breast cancer patients. Breathe Well will be compared to an adapted widely available monitoring system, the Real-time Position Management system (RPM). METHODS: BRAVEHeart is a single institution prospective randomised trial of two DIBH devices. BRAVEHeart will assess the DIBH accuracy for Breathe Well and RPM during left-sided breast cancer radiotherapy. After informed consent has been obtained, 40 patients will be randomised into two equal groups, the experimental arm (Breathe Well) and the control arm (RPM with in-house modification of an added patient screen). The primary hypothesis of BRAVEHeart is that the accuracy of Breathe Well in maintaining the position of the chest during DIBH is superior to the RPM system. Accuracy will be measured by comparing chest wall motion extracted from images acquired of the treatment field during breast radiotherapy for patients treated using the Breathe Well system and those using the RPM system. DISCUSSION: The Breathe Well device uses a depth camera to monitor the chest surface while the RPM system monitors a block on the patient's abdomen. The hypothesis of this trial is that the chest surface is a better surrogate for the internal chest wall motion used as a measure of treatment accuracy. The Breathe Well device aims to deliver an easy-to-use implementation of surface monitoring. The findings from the study will help inform the technology choice for other centres performing DIBH. TRIAL REGISTRATION: ClinicalTrials.gov NCT02881203 . Registered on 26 August 2016.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Breath Holding , Unilateral Breast Neoplasms/radiotherapy , Prospective Studies , Heart , Organs at Risk
2.
J Med Imaging Radiat Oncol ; 62(1): 133-139, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29405637

ABSTRACT

INTRODUCTION: Irregular breathing motion exacerbates uncertainties throughout a course of radiation therapy. Breathing guidance has demonstrated to improve breathing motion consistency. This was the first clinical implementation of audiovisual biofeedback (AVB) breathing guidance over a course of liver stereotactic body radiotherapy (SBRT) investigating interfraction reproducibility. METHODS: Five liver cancer patients underwent a screening procedure prior to CT sim during which patients underwent breathing conditions (i) AVB, or (ii) free breathing (FB). Whichever breathing condition was more regular was utilised for the patient's subsequent course of SBRT. Respiratory motion was obtained from the Varian respiratory position monitoring (RPM) system (Varian Medical Systems). Breathing motion reproducibility was assessed by the variance of displacement across 10 phase-based respiratory bins over each patient's course of SBRT. RESULTS: The screening procedure yielded the decision to utilise AVB for three patients and FB for two patients. Over the course of SBRT, AVB significantly improved the relative interfraction motion by 32%, from 22% displacement difference for FB patients to 15% difference for AVB patients. Further to this, AVB facilitated sub-millimetre interfraction reproducibility for two AVB patients. CONCLUSION: There was significantly less interfraction motion with AVB than FB. These findings demonstrate that AVB is potentially a valuable tool in ensuring reproducible interfraction motion.


Subject(s)
Biofeedback, Psychology , Liver Neoplasms/radiotherapy , Radiosurgery/methods , Respiratory-Gated Imaging Techniques/methods , Female , Humans , Male , Movement , Reproducibility of Results
3.
Adv Radiat Oncol ; 2(3): 354-362, 2017.
Article in English | MEDLINE | ID: mdl-29114603

ABSTRACT

PURPOSE: Respiratory variation can increase the variability of tumor position and volume, accounting for larger treatment margins and longer treatment times. Audiovisual biofeedback as a breath-hold technique could be used to improve the reproducibility of lung tumor positions at inhalation and exhalation for the radiation therapy of mobile lung tumors. This study aimed to assess the impact of audiovisual biofeedback breath-hold (AVBH) on interfraction lung tumor position reproducibility and volume consistency for respiratory-gated lung cancer radiation therapy. METHODS: Lung tumor position and volume were investigated in 9 patients with lung cancer who underwent a breath-hold training session with AVBH before 2 magnetic resonance imaging (MRI) sessions. During the first MRI session (before treatment), inhalation and exhalation breath-hold 3-dimensional MRI scans with conventional breath-hold (CBH) using audio instructions alone and AVBH were acquired. The second MRI session (midtreatment) was repeated within 6 weeks after the first session. Gross tumor volumes (GTVs) were contoured on each dataset. CBH and AVBH were compared in terms of tumor position reproducibility as assessed by GTV centroid position and position range (defined as the distance of GTV centroid position between inhalation and exhalation) and tumor volume consistency as assessed by GTV between inhalation and exhalation. RESULTS: Compared with CBH, AVBH improved the reproducibility of interfraction GTV centroid position by 46% (P = .009) from 8.8 mm to 4.8 mm and GTV position range by 69% (P = .052) from 7.4 mm to 2.3 mm. Compared with CBH, AVBH also improved the consistency of intrafraction GTVs by 70% (P = .023) from 7.8 cm3 to 2.5 cm3. CONCLUSIONS: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

4.
Article in English | MEDLINE | ID: mdl-29139207

ABSTRACT

INTRODUCTION: Patient rotation could greatly simplify radiation therapy delivery, with particularly important ramifications for fixed beam treatment with protons, heavy ions, MRI-Linacs, and low cost Linacs. Patient tolerance is often cited as a barrier to widespread implementation to patient rotation; however, no quantitative data addressing this issue exists. In this study, patient reported experiences of slow, single arc rotation in upright (sitting) and lying orientations are reported. METHODS: Fifteen patients currently or previously treated for cancer were slowly (~2 rpm) rotated in upright and lying orientations using an existing medical device. Patients were rotated 360° in 45° increments. Rotation was paused for 30 seconds at each angle to simulate beam delivery. Claustrophobia, anxiety and motion sickness were monitored via validated questionnaires. The Wilcoxon signed rank test was used to test for significant differences in anxiety and motion sickness before, during and after the study. RESULTS: No significant differences in anxiety or motion sickness were found between before and after the study, or upright and lying rotation (P > 0.05). The median percentage scores for anxiety and motion sickness immediately following the study were both 0. In general, anxiety and motion sickness scores were low throughout the study. All patients except one completed the study. CONCLUSIONS: Slow, single arc rotation in upright and lying orientations was well tolerated in this study. These results support the need for further studies into the clinical implementation of patient rotation, which could have a major impact on the practice and cost of radiotherapy.

5.
Int J Radiat Oncol Biol Phys ; 94(3): 628-36, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26867892

ABSTRACT

PURPOSE: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. METHODS AND MATERIALS: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. RESULTS: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). CONCLUSIONS: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.


Subject(s)
Feedback, Sensory/physiology , Lung Neoplasms , Magnetic Resonance Imaging, Cine , Movement , Respiration , Humans , Lung Neoplasms/radiotherapy
6.
Adv Radiat Oncol ; 1(4): 365-372, 2016.
Article in English | MEDLINE | ID: mdl-28740907

ABSTRACT

PURPOSE: The purpose of this article is to present the first imaging experiments to demonstrate the functional equivalence between a conventional rotational gantry and a fixed-beam imaging geometry, and the feasibility of an iterative image-reconstruction technique under gravitational deformation. METHODS AND MATERIALS: Experiments were performed using an Elekta Axesse with Agility MLC and XVI, a custom-built rotating phantom stage, a Catphan QA phantom, and a porcine heart. For the imaging equivalence, a conventional cone beam computed tomography (CBCT) of the Catphan was acquired, as well as a set of 660 x-ray projections with a static gantry and rotating Catphan. Both datasets were reconstructed with the Feldkamp-Davis-Kress (FDK) algorithm, and the resultant volumetric images were compared using standard metrics. For imaging under gravitational deformation, a conventional CBCT of the Catphan and a set of 660 x-ray projections with a static gantry and rotating Catphan were also acquired with a porcine heart. The conventional CBCT was reconstructed using FDK. The projections that were acquired with the heart rotating were sorted into angular bins and reconstructed with prior image constrained compressed sensing using a deformation-blurred FDK prior. Deformation was quantified with B-spline transformation-based deformable image registration. RESULTS: For imaging equivalence, the difference between the two Catphan images was consistent with Poisson noise. For imaging under gravitational deformation, the conventional CBCT porcine heart image (ground truth at 0 degrees) matched the static gantry, rotating heart reconstruction with a mean magnitude of <3 mm and maximum magnitude of <5 mm of the deformation vector field. The mean deformation of the rotating heart was 3.0 to 8.9 mm, up to 16.1 mm maximum deformation. Deformation was mainly observed in the direction of gravity. CONCLUSIONS: We have demonstrated imaging equivalence in cone beam CT reconstructions between rigid phantom images acquired with a conventional rotating gantry and with a fixed-gantry and rotating phantom. We have presented a method for image reconstruction under a fixed-beam imaging geometry using a deformable phantom.

7.
J Med Imaging Radiat Oncol ; 59(5): 654-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26247520

ABSTRACT

This case report details a clinical trial's first recruited liver cancer patient who underwent a course of stereotactic body radiation therapy treatment utilising audiovisual biofeedback breathing guidance. Breathing motion results for both abdominal wall motion and tumour motion are included. Patient 1 demonstrated improved breathing motion regularity with audiovisual biofeedback. A training effect was also observed.


Subject(s)
Breath Holding , Immobilization/methods , Liver Neoplasms/surgery , Patient Positioning/methods , Radiosurgery/methods , Aged , Audiovisual Aids , Biofeedback, Psychology , Humans , Male , Motion , Pilot Projects , Treatment Outcome
8.
BMC Cancer ; 15: 526, 2015 Jul 18.
Article in English | MEDLINE | ID: mdl-26187714

ABSTRACT

BACKGROUND: There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. METHODS/DESIGN: To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this clinical trial is to assess the impact of audiovisual biofeedback on breathing motion, the patient experience and clinical confidence in the system, clinical workflow, treatment margins, and toxicity outcomes. DISCUSSION: This clinical trial marks an important milestone in breathing guidance studies as it will be the first randomised, controlled trial providing the most comprehensive evaluation of the clinical impact of breathing guidance on cancer radiation therapy to date. This study is powered to determine the impact of AV biofeedback on breathing regularity and medical image quality. Objectives such as determining the indications and contra-indications for the use of AV biofeedback, evaluation of patient experience, radiation toxicity occurrence and severity, and clinician confidence will shed light on the design of future phase III clinical trials. TRIAL REGISTRATION: This trial has been registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), its trial ID is ACTRN12613001177741 .


Subject(s)
Biofeedback, Psychology/instrumentation , Lung Neoplasms/radiotherapy , Respiratory-Gated Imaging Techniques/methods , Australia , Biofeedback, Psychology/methods , Humans , Image Interpretation, Computer-Assisted/standards , Lung Neoplasms/pathology , Respiratory-Gated Imaging Techniques/adverse effects , Respiratory-Gated Imaging Techniques/instrumentation , Surveys and Questionnaires , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...