Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 196: 115614, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837786

ABSTRACT

The aim of this study was to characterize and quantify microplastics (MPs) at the chlorophyll maximum layer (CML), around 30 to 60 m depth, during a cruise dedicated to the study of contaminants in plankton, the MERITE-HIPPOCAMPE project, along a north-south transect in the western Mediterranean Sea (Tedetti et al., 2023). Plankton were collected by horizontal net tows in this layer using a multinet Hydrobios Midi equipped with 60 µm mesh-size nets. The collected plankton were fractionated through a sieve column for various later contaminant measurements and for zooplankton analysis (Fierro-González et al., 2023). For all stations, samples were also fully examined for microplastics (MPs) for fractions >300 µm. MPs were found at all stations in the CML layer (mean: 42.9 ± 45.4 MPs m-3), of which 96 ± 4 % were fibers. The ratios of mesozooplankton/MPs and detritus/MPs in this CML were respectively 223 ± 315 and 2544 ± 2268. These data are analyzed together with MPs concentrations from sea- surface sampled with a 300 µm net-size Manta net at the same stations. Overall, our observations highlight the very high density of fibers at the CML, mainly associated with aggregates, raising the hypothesis of their interactions with marine snow. Therefore, the importance of marine snow and vertical layering will have to be considered in future MP distribution modelling efforts.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Zooplankton , Plastics/analysis , Mediterranean Sea , Environmental Monitoring , Plankton , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 193: 115056, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37352804

ABSTRACT

Recent studies have demonstrated that plankton can be a key pathway for the uptake and transfer of contaminants entering the marine environment up to top predators. The plankton-contaminant MERITE-HIPPOCAMPE cruise was devoted to quantifying contaminants in water and the whole plankton size range (10 size fractions) at 10 stations along a north-south transect in the western Mediterranean Sea from the French to the Tunisian coasts through the Provençal and Algerian basins. Pumping and filtering devices and net sampling have been used for collecting very high amounts of small particles and planktonic organisms in the chlorophyll maximum layer (CML). The present paper characterizes the zooplankton components for which the contaminant measurements were carried out. At each station, a horizontal towed Hydro-Bios net with a 60 µm mesh-size net was used to discriminate 5 size-fractions from 60 µm to a few mm. For each size-fraction, one part of the sample was used for dry weight measurements and the other one for estimating the contribution to biomass of detritus, phytoplankton, and among zooplankton of the major taxonomic groups based on the imagery tools ZOOSCAN and FLOWCAM. In each zooplankton size fraction, metabolic rates were calculated from the size spectrum to estimate trophic and excretion fluxes flowing through this fraction. These observations were compared to a similar analysis of tows in the upper layer (vertical) and the surface layer (horizontal). The total sampled biomass concentration at the CML was higher than in the water column (COL) and much higher than at the surface (SURF) in most of the stations, but in the CML and COL a substantial contribution was due to detritus mostly concentrated in the smallest size-fractions (60-200 µm and 200-500 µm). Absolute values of zooplankton biomass show neither a clear spatial pattern nor a significant difference between strata. The CML layer was dominated by copepods similarly to COL and SURF, but presented a higher contribution of nauplii and a near absence of appendicularians. At some stations, crustaceans and gelatinous plankton could be important contributors to CML. The zooplankton biomass composition of the two smallest fractions (<500 µm) was dominated by nauplii, small copepods and, occasionally, by small miscellaneous organisms (mostly pteropodes). In contrast, clear differences between stations appeared for the largest fractions (>500 µm) due to large crustaceans, gelatinous organisms, and chaetognaths. These changes in biomass composition according to size fractions suggest a progressive trophic shift from dominant herbivory in the smallest fractions to more contrasted trophic structure (including carnivory) in the largest fractions. The daily carbon demand and the N and P excretion of zooplankton were on average higher at the CML but with no significant difference with COL. The zooplankton grazing represented 2.7 to 22.7 % of the phytoplankton stock per day, whereas its excretion represented a daily N and P recycling compared to dissolved inorganic nitrogen and phosphorus stocks ranging respectively from 0.2 to 19 % and from 0 to 21 %. This information should help in the interpretation of the content of various contaminants in zooplankton fractions.


Subject(s)
Copepoda , Plankton , Animals , Zooplankton , Chlorophyll/analysis , Biomass , Phytoplankton , Water , Food Chain
3.
BMC Nephrol ; 18(1): 34, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28114891

ABSTRACT

BACKGROUND: Mediterranean diet is characterized by low to moderate consumption of animal protein and high consumption of fruits, vegetables, bread, beans, nuts, seeds and other cereals. It has been associated with reduced risk of cardiovascular disease. However, it is not suitable for chronic kidney disease because of high potassium intake. DISCUSSION: Tunisia is an emerging Mediterranean country with limited resources, a high prevalence of chronic hemodialysis treatment and high dialysis expenditures. In order to limit dialysis cost, primary and secondary prevention of chronic renal disease are of paramount importance. In addition to drugs, secondary prevention includes diet measures (e.g. salt diet, protein diet). The aims of diet practice in chronic kidney disease are to slow chronic renal failure progression and to prevent its complications like hyperphosphatemia and hyperkaliemiae. A few decades ago, a Tunisian diet was exclusively Mediterranean, and protein consumption was not excessive. However, today, protein consumption is more comparable to western countries. Salt consumption is also excessive. Some Tunisian diets still include food with high potassium intake, which are not suitable for patients with chronic kidney disease. Therefore, the role of the dietician is extremely important to help calculate and create a dietary regimen tailored to each of our patients. Advice about diets should be adapted to both the patient and population habits to improve adherence rate. As such, the purpose of this article is to provide our own experience regarding medical nutrition therapy in patients with chronic kidney disease in Tunisia, with some changes in food habits. Prevention is far better than treatment. In this perspective, dietary measures must be at the core of our intervention.


Subject(s)
Hyperkalemia/prevention & control , Hyperphosphatemia/prevention & control , Renal Insufficiency, Chronic/diet therapy , Diet, Mediterranean/adverse effects , Dietary Proteins , Humans , Hyperkalemia/etiology , Hyperphosphatemia/etiology , Iron, Dietary , Phosphorus, Dietary , Potassium, Dietary/adverse effects , Renal Insufficiency, Chronic/complications , Secondary Prevention , Sodium Chloride, Dietary/adverse effects , Tunisia , Vitamin D
SELECTION OF CITATIONS
SEARCH DETAIL
...