Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(19)2022 09 21.
Article in English | MEDLINE | ID: mdl-36230912

ABSTRACT

The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host-pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Expression , Humans , Immunologic Factors , SARS-CoV-2
2.
Mol Plant Pathol ; 22(1): 77-91, 2021 01.
Article in English | MEDLINE | ID: mdl-33146443

ABSTRACT

Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.


Subject(s)
Methionine/metabolism , Plant Diseases/virology , Potyvirus/physiology , Solanum tuberosum/metabolism , Disease Susceptibility , Host-Pathogen Interactions , Proteomics , Solanum tuberosum/virology , Temperature
3.
New Phytol ; 224(1): 439-453, 2019 10.
Article in English | MEDLINE | ID: mdl-31215645

ABSTRACT

In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.


Subject(s)
Coiled Bodies/metabolism , Nicotiana/immunology , Nicotiana/virology , Nuclear Proteins/metabolism , Plant Proteins/metabolism , Plant Viruses/physiology , Salicylic Acid/metabolism , Viral Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified , Protein Binding , Nicotiana/genetics
4.
Data Brief ; 16: 1034-1037, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29322084

ABSTRACT

Nanoparticles (NPs) have a number of unique properties associated with their ultrasmall size and exhibit many advantages compared with existing plant biotechnology platforms for delivery of proteins, RNA and DNA of various sizes into the plant cells (Arruda et al., 2015; Silva et al., 2010; Martin-Ortigosa et al., 2014; Mitter et al., 2017) [1], [2], [3], [4]. The data presented in this article demonstrate a delivery of biomolecules into Nicotiana benthamiana plant leaves using various types of NPs including gold, iron oxide and chitosan NPs and methods of biolistic bombardment and infiltration. The data demonstrate physical characteristics of NPs coated with fluorescently labeled protein and small RNA (size and zeta-potential) and visualization of nanocomplexes delivery into cells of N. benthamiana leaves by fluorescence microscopy.

5.
J Gen Virol ; 96(11): 3422-3431, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276346

ABSTRACT

Hordeivirus movement protein encoded by the first gene of the triple gene block (TGB1 protein, TGBp1) interacts in vivo with viral genomic and subgenomic RNAs to form ribonucleoprotein (RNP) particles that are considered to be a form of viral genome (non-virion transport form) capable of cell-to-cell and long-distance transport in infected plants. The structures of these RNPs have not been elucidated. The poa semilatent virus (PSLV) TGBp1 contains a structured C-terminal NTPase/helicase domain and an N-terminal extension region consisting of two domains - a completely intrinsically disordered extreme N-terminal domain and an internal domain (ID) with structure resembling a partially disordered molten globule. Here, we characterized the structures assembled in vitro by the full-length PSLV TGBp1 alone or in the presence of viral RNA. The PSLV TGBp1 was capable of multimerization and self-assembly into extended high-molecular-mass complexes. These complexes disassembled to apparent monomers upon incubation with ATP. Upon incubation with viral RNA, the PSLV TGBp1 in vitro formed RNP structures that appeared as filamentous particles resembling virions of helical filamentous plant viruses in morphology and dimensions. By comparing the biophysical characteristics of PSLV TGBp1 and its domains in the presence and absence of RNA, we show that the ID plays the main structural role in the self-interactions and RNA interactions of TGBp1 leading to the assembly of virus-like RNP particles.


Subject(s)
RNA Viruses/metabolism , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Genome, Viral , RNA Viruses/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Ribonucleoproteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...