Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38661201

ABSTRACT

We present the result of our calculations of ultrafast electron diffraction (UED) for cyclobutanone excited into the S2 electronic state, which is based on the non-adiabatic dynamics simulations with the Ab Initio Multiple Cloning (AIMC) method with the electronic structure calculated at the SA(3)-CASSCF(12,12)/aug-cc-pVDZ level of theory. The key features in the UED pattern were identified, which can be used to distinguish between the reaction pathways observed in the AIMC dynamics, although there is a significant overlap between representative signals due to the structural similarity of the products. The calculated UED pattern can be compared with the experiment.

2.
J Phys Chem Lett ; 15(12): 3404-3411, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38502942

ABSTRACT

The process of dissociation for two hydrofluorocarbon molecules in low triplet states excited by electron impact in plasma is investigated by ab initio molecular dynamics (AIMD). The interest in the dissociation of hydrofluorocarbons in plasma is motivated by their role in plasma etching in microelectronic technologies. Dissociation of triplet states is very fast, and the reaction products can be predicted. In this work, it was found that higher triplet states relax into the lowest triplet state within a few femtoseconds due to nonadiabatic dynamics, such that the simplest ab initio MD on the lowest triplet state seems to give a reasonable estimate of the reaction channels branching ratios. We provide evidence of the existence of simple rules for the dissociation of hydrofluorocarbon molecules in triplet states. For molecules with a double bond, the bonds adjacent to the double bond dissociate faster than the other bonds.

3.
J Chem Theory Comput ; 19(16): 5356-5368, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37506288

ABSTRACT

We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.

4.
J Chem Phys ; 154(10): 104119, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722013

ABSTRACT

Photo-dissociation dynamics is simulated for vibrationally pre-excited pyrrole molecules using an ab initio multiple cloning approach. Total kinetic energy release (TKER) spectra and dissociation times are calculated. It is found that pre-excitation of N-H bond vibrations facilitates fast direct dissociation, which results in a significant increase in the high-energy wing of TKER spectra. The results are in very good agreement with the recent vibrationally mediated photo-dissociation experiment, where the TKER spectrum was measured for pyrrole molecules excited by a combination of IR and UV laser pulses. Calculations for other vibrational modes show that this effect is specific for N-H bond vibrations: Pre-excitation of other modes does not result in any significant changes in TKER spectra.

5.
J Phys Chem Lett ; 12(11): 2970-2982, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33730495

ABSTRACT

Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.

6.
Phys Chem Chem Phys ; 21(19): 9987-9995, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31041956

ABSTRACT

We present results obtained using the ab initio multiple cloning (AIMC) method to simulate fully quantum dynamics for imidazole and its structural isomer pyrazole along with their selectively deuterated species. We simulate the ultrafast dissociation of the N-H/D bond for these molecules along the repulsive 1πσ* state which agrees well with previous experimental results. Our results give evidence for a two-stage dissociation of the N-H/D bond on the sub-50 fs regime for imidazole, pyrazole and their selectively deuterated species, and give evidence for the importance of the repulsive 1πσ* state along the N-H/D bond coordinate for the relaxation of both imidazole and pyrazole. The ability of these calculations to reproduce experimental results lends confidence that larger complex systems could be explored with predictive capabilities with the AIMC method. These results also confirm the ability of the AIMC method to add detailed insights into which experiments are blind.

7.
Phys Chem Chem Phys ; 21(7): 3832-3841, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30698166

ABSTRACT

The ultrafast photodissociation dynamics of 2-ethylpyrrole (2-EP) is simulated in a fully quantum manner on the S1 and S2 πσ* states by the ab initio multiple cloning (AIMC) method. AIMC treats electrons with accurate electronic structure methods "on the fly", and nuclear dynamics with wavefunction propagation via a basis set of Ehrenfest trajectory guided Gaussian wavepackets. Total kinetic energy release (TKER) spectra are produced, as well as velocity map images and N-H dissociation times. These are compared to results from time-resolved velocity map imaging studies, and the AIMC method is able to provide quantitative reproduction of experimental data, including dissociation times of 50-80 fs. Novel insight into the dissociation mechanism is then obtained, with the experimentally obtained time constant shown to be composed of two components. Firstly, there is a contribution in <50 fs from 2-EP molecules that have sufficient energy in the N-H stretch coordinate to dissociate almost immediately over the barrier, and this is followed by a second slower contribution from 2-EP molecules that must sample the potential energy surface before finding a way around the barrier to dissociate. This two component mechanism is not observed experimentally due to the temporal widths of the laser pulses obscuring the dynamics in the <50 fs window, and is shown for the first time via theory. Calculations are also performed on selectively deuterated 2-EP, demonstrating that AIMC is able to produce a kinetic isotope effect for the dissociation time constant, and correctly predict a shift to lower energy in the TKER spectrum. The S2 πσ* state is also shown to be unstable with respect to the S1 πσ* state, with the N-H dissociation proceeding along S1 when initially excited to S2. This work demonstrates that the combination of state of the art theory and experiments can provide unprecedented novel insight into the N-H dissociation mechanism, with the tantalising prospect of providing insight into more general heteroatom hydride bond dissociation.

8.
Phys Chem Chem Phys ; 20(26): 17762-17772, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29917032

ABSTRACT

We present a new implementation of the Ab Initio Multiple Cloning (AIMC) method, which is applied for non-adiabatic excited-state molecular dynamics simulations of photoinduced processes in conjugated molecules. Within our framework, the multidimensional wave-function is decomposed into a superposition of a number of Gaussian coherent states guided by Ehrenfest trajectories that are suited to clone and swap their electronic amplitudes throughout the simulation. New generalized cloning criteria are defined and tested. Because of sharp changes of the electronic states, which are common for conjugated polymers, the electronic parts of the Gaussian coherent states are represented in the Time Dependent Diabatic Basis (TDDB). The input to these simulations in terms of the excited-state energies, gradients and non-adiabatic couplings, is calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. As a test case, we consider the photoinduced unidirectional electronic and vibrational energy transfer between two- and three-ring linear poly(phenylene ethynylene) units linked by meta-substitution. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer between dendritic branches are discussed.

10.
Faraday Discuss ; 194: 81-94, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711808

ABSTRACT

We present an account of our recent effort to improve simulation of the photodissociation of small heteroaromatic molecules using the Ab Initio Multiple Cloning (AIMC) algorithm. The ultimate goal is to create a quantitative and converged technique for fully quantum simulations which treats both electrons and nuclei on a fully quantum level. We calculate and analyse the total kinetic energy release (TKER) spectra and Velocity Map Images (VMI), and compare the results directly with experimental measurements. In this work, we perform new extensive calculations using an improved AIMC algorithm that now takes into account the tunnelling of hydrogen atoms. This can play an extremely important role in photodissociation dynamics.

11.
Phys Chem Chem Phys ; 18(15): 10028-40, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27004611

ABSTRACT

Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. A comparative analysis of our results obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with and without decoherence corrections is presented.

12.
Phys Chem Chem Phys ; 17(5): 3316-25, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25523235

ABSTRACT

We report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropic component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.


Subject(s)
Pyrroles/chemistry , Electrons , Models, Theoretical , Photolysis , Thermodynamics
13.
J Chem Phys ; 141(5): 054110, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25106573

ABSTRACT

We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.


Subject(s)
Algorithms , Models, Chemical , Molecular Dynamics Simulation , Quantum Theory , Software , Thermodynamics , Computer Simulation , Energy Transfer , Phase Transition
14.
J Chem Phys ; 133(4): 044504, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20687660

ABSTRACT

Singlet exciton localization in conformationally disordered poly(3-hexylthiophene) (P3HT) is investigated via configuration interaction (singles) calculations of the Pariser-Parr-Pople model. The P3HT structures are generated by molecular dynamics simulations. The lowest-lying excitons are spatially localized, space filling, and nonoverlapping. These define spectroscopic segments or chromophores. The strong conformational disorder in P3HT causes breaks in the pi-conjugation. Depending on the relative values of the disorder-induced localization length and the distances between the pi-conjugation breaks, these breaks sometimes serve to pin the low-lying localized excitons. The exciton confinement also causes a local spectrum of low-lying exciton states. Coulomb-induced intra- or interchain interactions between spectroscopic segments in close spatial proximity can delocalize an exciton across these segments, in principle causing phase coherent transition dipole moments.

SELECTION OF CITATIONS
SEARCH DETAIL
...