Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Ecol Sociobiol ; 76(1): 11, 2022.
Article in English | MEDLINE | ID: mdl-35002046

ABSTRACT

ABSTRACT: Animals are increasingly challenged to respond to novel or rapidly changing habitats due to urbanization and/or displacement outside their native range by humans. Behavioral differences, such as increased boldness (i.e., propensity for risk-taking), are often observed in animals persisting in novel environments; however, in many cases, it is unclear how these differences arise (e.g., through developmental plasticity or evolution) or when they arise (i.e., at what age or developmental stage). In the Guttural Toad (Sclerophrys gutturalis), adult urban toads from both native and invasive ranges are bolder than conspecifics in natural habitats. Here, we reared Guttural Toad tadpoles in a common garden experiment, and tested for innate differences in boldness across their development and between individuals whose parents and lineage came from rural-native, urban-native, and urban-invasive localities (i.e., origin populations). Tadpoles did not differ in their boldness or in how their boldness changed over ontogeny based on their origin populations. In general, tadpoles typically became less bold as they aged, irrespective of origin population. Our findings indicate that differences in boldness in free-living adult Guttural Toads are not innate in the tadpole stage and we discuss three possible mechanisms driving phenotypic divergence in adult boldness for the focus of future research: habitat-dependent developmental effects on tadpole behavior, decoupled evolution between the tadpole and adult stage, and/or behavioral flexibility, learning, or acclimatization during the adult stage. SIGNIFICANCE STATEMENT: To determine if animals can persist in urban areas or become invasive outside their native ranges, it is important to understand how they adapt to life in the city. Our study investigates if differences in boldness that have been found in adult Guttural Toads (Sclerophrys gutturalis) represent heritable differences that can also be found in early life stages by rearing tadpoles from eggs in a common garden experiment. We did not find any differences in boldness among tadpoles from rural-native, urban-native, and urban-invasive origin populations. Our findings suggest that differences in boldness are not innate and/or that boldness is a behavioral trait that is decoupled between the tadpole and the adult stage.

2.
Evolution ; 70(11): 2647-2656, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27596628

ABSTRACT

Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy-free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an "early burst" in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche-filling model. We suggest that the observed "early burst" pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study.


Subject(s)
Adaptation, Physiological/genetics , Genetic Speciation , Genetic Variation , Lizards/genetics , Predatory Behavior , Animals , Ecosystem , Lizards/anatomy & histology , Lizards/classification , Phenotype , Phylogeny , Selection, Genetic
3.
Mol Phylogenet Evol ; 82 Pt A: 31-42, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25307118

ABSTRACT

The Afroedura nivaria species complex (A. nivaria, A. karroica, A. amatolica, A. tembulica and A. halli) is a morphologically conservative group of medium-sized flat geckos endemic to South Africa and Lesotho. Species are allopatric, as are some populations within species that are separated by large expanses of unsuitable habitat. Because of this isolation of populations we hypothesised that several cryptic species may be present. To investigate this hypothesis we constructed a molecular phylogeny using multiple markers, and included representatives of other Afroedura species. Bayesian inference and maximum likelihood analyses (439bp 16S, 593bp ND4, 948bp RAG1) strongly supported the genetic distinctiveness of the five described species. However, the A. nivaria species complex as currently described is not monophyletic, as A. karroica was positioned outside a clade containing all other Afroedura species, and A. pondolia (which was presumed to belong to a different species complex) was recovered within the A. nivaria complex. Several distinct clades within A. halli and A. nivaria were also recovered, and the narrowly-distributed A. amatolica consisted of two highly divergent clades. We also conducted a multivariate analysis using 19 morphological characters to investigate whether the clades recovered by the phylogeny were distinct in terms of head, body and limb shape. The analysis showed some variation between clades in terms of locomotor apparatus (forelimbs and feet), head and body dimensions, but overall the morphological differences were minor. This morphological conservatism in the A. nivaria complex may be a result of adaptation to similar microhabitats. Exclusive of A. karroica, the results suggest that there are at least nine species in this complex, of which four are cryptic and undescribed.


Subject(s)
Genetic Speciation , Lizards/classification , Phylogeny , Animals , Bayes Theorem , Likelihood Functions , Lizards/anatomy & histology , Lizards/genetics , Models, Genetic , Sequence Analysis, DNA , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...