Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38572889

ABSTRACT

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Subject(s)
Annona , Curcumin , Rats , Animals , Aflatoxin B1/toxicity , Curcumin/pharmacology , Alanine Transaminase/pharmacology , Alkaline Phosphatase/pharmacology , Creatinine/pharmacology , Liver , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aspartate Aminotransferases/pharmacology , Lactate Dehydrogenases
2.
Heliyon ; 10(2): e24435, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312698

ABSTRACT

Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 µg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 µg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.

3.
Sci Rep ; 13(1): 11755, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474706

ABSTRACT

Artificial neural networks (ANNs) have in recent times found increasing application in predictive modelling of various food processing operations including fermentation, as they have the ability to learn nonlinear complex relationships in high dimensional datasets, which might otherwise be outside the scope of conventional regression models. Nonetheless, a major limiting factor of ANNs is that they require quite a large amount of training data for better performance. Obtaining such an amount of data from biological processes is usually difficult for many reasons. To resolve this problem, methods are proposed to inflate existing data by artificially synthesizing additional valid data samples. In this paper, we present a generative adversarial network (GAN) able to synthesize an infinite amount of realistic multi-dimensional regression data from limited experimental data (n = 20). Rigorous testing showed that the synthesized data (n = 200) significantly conserved the variances and distribution patterns of the real data. Further, the synthetic data was used to generalize a deep neural network. The model trained on the artificial data showed a lower loss (2.029 ± 0.124) and converged to a solution faster than its counterpart trained on real data (2.1614 ± 0.117).


Subject(s)
Momordica charantia , Vitis , Fermentation , Beverages , Neural Networks, Computer
4.
J Fungi (Basel) ; 8(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422014

ABSTRACT

This study investigated 65 (35 in summer and 30 in winter) smallholder dairy cattle feeds from Free State and Limpopo provinces in South Africa from 2018 to 2019 for fungal contamination and assessed the impacts of seasonal variation on fungal contamination levels, isolation frequency, and diversity. Samples were examined for fungal contamination using macro- and microscopic approaches, and their identities were confirmed by molecular means. A total of 217 fungal isolates from 14 genera, including Aspergillus, Fusarium, and Penicillium, were recovered from feeds from both seasons. The most prevalent fungal species recovered were A. fumigatus and P. crustosum. Mycological analyses showed that 97% of samples were contaminated with one or more fungal isolates, with the summer fungal mean level (6.1 × 103 to 3.0 × 106 CFU/g) higher than that of feeds sampled during winter (mean level: 1.1 × 103 to 4.1 × 105 CFU/g). Independent sample t-test revealed that the isolation frequencies of the genera Aspergillus and Fusarium were significantly (p ≤ 0.05) higher in summer than winter, while Penicillium prevalence in both seasons was not statistically (p > 0.05) different. Furthermore, the Shannon−Weiner diversity index (H') revealed a higher fungal diversity in summer (H' = 2.8) than in winter (H' = 2.1). This study on fungal contamination could be used for future fungal control and mycotoxin risk management in South Africa.

5.
Fungal Biol Biotechnol ; 9(1): 15, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307838

ABSTRACT

BACKGROUND: Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. RESULTS: The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. CONCLUSION: Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.

6.
Onderstepoort J Vet Res ; 89(1): e1-e6, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35384682

ABSTRACT

Aflatoxins are potent hepatotoxic and carcinogenic secondary metabolites produced by toxigenic fungi. The present study investigated the protective effect of methanolic leaf extracts of Monanthotaxis caffra (MLEMC) against aflatoxin B1-induced toxicity in male Sprague-Dawley rats. The rats were randomly divided into 6 groups of 8 animals each. Five groups were administered orally for seven days with three different concentrations of MLEMC (100 mg/kg, 200 mg/kg and 300 mg/kg), curcumin (10 mg/kg) or vehicle (25% propylene glycol). The following day, these groups were administered 1 mg/kg b.w. of aflatoxin B1 (AFB1). The experiment was terminated three days after administration of AFB1. Group 6 represented untreated healthy control. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatinine and liver histopathology were evaluated. Methanolic leaf extracts of M. caffra decreased the levels of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and creatinine in the sera of rats as compared with the AFB1 intoxicated group. Co-administration of MLEMC improved the histological characteristics of the hepatocytes in contrast to the AFB1 treated group, which had mild to severe hepatocellular injuries including bile duct proliferation, bile duct hyperplasia, lymphoplasmacytic infiltrate and fibrosis. Extracts of M. caffra were beneficial in mitigating the hepatotoxic effects of AFB1 in rats by reducing the levels of liver enzymes and preventing hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Rodent Diseases , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Alanine Transaminase/metabolism , Alanine Transaminase/pharmacology , Animals , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/veterinary , Creatinine/metabolism , Creatinine/pharmacology , Lactate Dehydrogenases/metabolism , Liver , Male , Methanol/metabolism , Methanol/pharmacology , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Rodent Diseases/metabolism , Rodent Diseases/pathology
7.
Heliyon ; 6(10): e05291, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33134582

ABSTRACT

Mycotoxins present a great concern to food safety and security due to their adverse health and socio-economic impacts. The necessity to formulate novel strategies that can mitigate the economic and health effects associated with mycotoxin contamination of food and feed commodities without any impact on public health, quality and nutritional value of food and feed, economy and trade industry become imperative. Various strategies have been adopted to mitigate mycotoxin contamination but often fall short of the required efficacy. One of the promising approaches is the use of bioactive plant components/metabolites synergistically with mycotoxin-absorbing components in order to limit exposure to these toxins and associated negative health effects. In particular, is the fabrication of ß-cyclodextrin-based nanosponges encapsulated with bioactive compounds of plant origin to inhibit toxigenic fungi and decontaminate mycotoxins in food and feed without leaving any health and environmental hazard to the consumers. The present paper reviews the use of botanicals extracts and their phytochemicals coupled with ß-cyclodextrin-based nanosponge technology to inhibit toxigenic fungal invasion and detoxify mycotoxins.

8.
J Pharm Pharmacol ; 70(7): 976-984, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29633259

ABSTRACT

OBJECTIVES: Monanthotaxis caffra (Sond.) Verdc. (Annonaceae) has been reported to possess antitumoural properties. Preliminary screening showed that the crude methanolic leaf extract had strong antimutagenic effects against aflatoxin B1 -induced mutagenicity. The aim of this study was to isolate and evaluate the antimutagenic properties of the active constituents from M. caffra. METHODS: Different chromatographic, spectroscopic and spectrometric techniques were used for the isolation and identification of the antimutagenic constituents. The antimutagenic effect of the extract and compounds was evaluated using Ames, Vitotox and Comet assays. KEY FINDINGS: Bioassay-guided fractionation of the methanolic leaf extract yielded two antimutagenic compounds identified as (+)-crotepoxide and 5,6-diacetoxy1-benzoyloxymethyl-1,3-cyclohexadiene. Crotepoxide had strong antimutagenicity in the Vitotox assay with an IC50 value of 131 µg/ml. 5,6-Diacetoxy-1-benzoyloxymethyl-1,3-cyclohexadiene showed strong antimutagenic activity in the Ames assay with an IC50 value of 348.9 µg/plate and no antimutagenic activity in the Vitotox test. Furthermore, the compound was able to inhibit, block or prevent biotransformation of aflatoxin B1 by repressing the proteins involved in transcription. CONCLUSIONS: Crotepoxide and 5,6-diacetoxy-1-benzoyloxymethyl-1,3-cyclohexadiene have the potential to mitigate the risks arising from consumption of aflatoxin B1 -contaminated food and feed.


Subject(s)
Annonaceae/chemistry , Antimutagenic Agents/pharmacology , Cyclohexenes/pharmacology , Epoxy Compounds/pharmacology , Plant Extracts/pharmacology , Aflatoxin B1/adverse effects , Aflatoxin B1/antagonists & inhibitors , Biotransformation/drug effects , Dose-Response Relationship, Drug , Epoxy Compounds/isolation & purification , Humans , Molecular Structure , Mutagenicity Tests , Plant Extracts/chemistry , Plant Leaves/chemistry , Tumor Cells, Cultured
9.
Braz. j. microbiol ; 48(4): 648-655, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889169

ABSTRACT

ABSTRACT Producing biofuels such as ethanol from non-food plant material has the potential to meet transportation fuel requirements in many African countries without impacting directly on food security. The current shortcomings in biomass processing are inefficient fermentation of plant sugars, such as xylose, especially at high temperatures, lack of fermenting microbes that are able to resist inhibitors associated with pre-treated plant material and lack of effective lignocellulolytic enzymes for complete hydrolysis of plant polysaccharides. Due to the presence of residual partially degraded lignocellulose in the gut, the dung of herbivores can be considered as a natural source of pre-treated lignocellulose. A total of 101 fungi were isolated (36 yeast and 65 mould isolates). Six yeast isolates produced ethanol during growth on xylose while three were able to grow at 42 °C. This is a desirable growth temperature as it is closer to that which is used during the cellulose hydrolysis process. From the yeast isolates, six isolates were able to tolerate 2 g/L acetic acid and one tolerated 2 g/L furfural in the growth media. These inhibitors are normally generated during the pre-treatment step. When grown on pre-treated thatch grass, Aspergillus species were dominant in secretion of endo-glucanase, xylanase and mannanase.


Subject(s)
Animals , Ethanol/metabolism , Fungi/isolation & purification , Fungi/metabolism , Manure/microbiology , Biofuels/analysis , Biofuels/microbiology , Fermentation , Fungi/classification , Fungi/genetics , Herbivory , Lignin/metabolism , Manure/analysis , Plants/metabolism , Xylose/metabolism
10.
Braz J Microbiol ; 48(4): 648-655, 2017.
Article in English | MEDLINE | ID: mdl-28629967

ABSTRACT

Producing biofuels such as ethanol from non-food plant material has the potential to meet transportation fuel requirements in many African countries without impacting directly on food security. The current shortcomings in biomass processing are inefficient fermentation of plant sugars, such as xylose, especially at high temperatures, lack of fermenting microbes that are able to resist inhibitors associated with pre-treated plant material and lack of effective lignocellulolytic enzymes for complete hydrolysis of plant polysaccharides. Due to the presence of residual partially degraded lignocellulose in the gut, the dung of herbivores can be considered as a natural source of pre-treated lignocellulose. A total of 101 fungi were isolated (36 yeast and 65 mould isolates). Six yeast isolates produced ethanol during growth on xylose while three were able to grow at 42°C. This is a desirable growth temperature as it is closer to that which is used during the cellulose hydrolysis process. From the yeast isolates, six isolates were able to tolerate 2g/L acetic acid and one tolerated 2g/L furfural in the growth media. These inhibitors are normally generated during the pre-treatment step. When grown on pre-treated thatch grass, Aspergillus species were dominant in secretion of endo-glucanase, xylanase and mannanase.


Subject(s)
Ethanol/metabolism , Fungi/isolation & purification , Fungi/metabolism , Manure/microbiology , Animals , Biofuels/analysis , Biofuels/microbiology , Fermentation , Fungi/classification , Fungi/genetics , Herbivory , Lignin/metabolism , Manure/analysis , Plants/metabolism , Xylose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...