Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Psychophysiology ; : e14593, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643374

ABSTRACT

Visual symmetry activates a network of regions in the extrastriate cortex and generates an event-related potential (ERP) called the sustained posterior negativity (SPN). Previous work has found that the SPN is robust to experimental manipulations of task, spatial attention, and memory load. In the current study, we investigated whether the SPN is also robust to alcohol-induced changes in mental state. A pilot experiment (N = 13) found that alcohol unexpectedly increased SPN amplitude. We followed this unexpected result with two new experiments on separate groups, using an alcohol challenge paradigm. One group completed an Oddball discrimination task (N = 26). Another group completed a Regularity discrimination task (N = 26). In both groups, participants consumed a medium dose of alcohol (0.65 g/kg body weight) and a placebo drink, in separate sessions. Alcohol reduced SPN amplitude in the Oddball task (contrary to the pilot results) but had no effect on SPN amplitude in the Regularity task. In contrast, the N1 wave was consistently dampened by alcohol in all experiments. Exploratory analysis indicated that the inconsistent effect of alcohol on SPN amplitude may be partly explained by individual differences in alcohol use. Alcohol reduced the SPN in light drinkers and increased it in heavier drinkers. Despite remaining questions, the results highlight the automaticity of symmetry processing. Symmetry still produces a large SPN response, even when participants are intoxicated, and even when symmetry is not task relevant.

2.
J Vis ; 24(3): 1, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427362

ABSTRACT

Previous work has found that feature attention can modulate electrophysiological responses to visual symmetry. In the current study, participants observed spatially overlapping clouds of black and white dots. They discriminated vertical symmetry from asymmetry in the target dots (e.g., black or white) and ignored the regularity of the distractor dots (e.g., white or black). We measured an electroencephalography component called the sustained posterior negativity (SPN), which is known to be generated by visual symmetry. There were five conditions with different combinations of target and distractor regularity. As well as replicating previous results, we found that an orthogonal axes of reflection in the distractor dots had no effect on SPN amplitude. We conclude that the visual system can processes reflectional symmetry in independent axis-orientation specific channels.


Subject(s)
Electroencephalography , Pattern Recognition, Visual , Humans , Pattern Recognition, Visual/physiology , Brain/physiology , Attention , Photic Stimulation
3.
Neuroimage ; 290: 120568, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38499052

ABSTRACT

Visual symmetry at fixation generates a bilateral Event Related Potential (ERP) called the Sustained Posterior Negativity (SPN). Symmetry presented in the left visual hemifield generates a contralateral SPN over the right hemisphere and vice versa. The current study examined whether the contralateral SPN is modulated by the focus of spatial attention. On each trial there were two dot patterns, one to the left of fixation, and one to the right of fixation. A central arrow cue pointed to one of the patterns and participants discriminated its regularity (symmetry or random). We compared contralateral SPN amplitude generated by symmetry at attended and unattended spatial locations. While the response to attended symmetry was slightly enhanced, the response to unattended symmetry was still substantial. Although visual symmetry detection is a computational challenge, we conclude that the brain processes visual symmetry in unattended parts of the visual field.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Evoked Potentials/physiology , Visual Fields , Brain/physiology , Attention/physiology , Photic Stimulation
4.
Cortex ; 174: 70-92, 2024 05.
Article in English | MEDLINE | ID: mdl-38492441

ABSTRACT

Reflectional (mirror) symmetry is an important visual cue for perceptual organization. The brain processes symmetry rapidly and efficiently. Previous work suggests that symmetry activates the extrastriate cortex and generates an event related potential (ERP) called the Sustained Posterior Negativity (SPN). It has been claimed that no tasks completely block symmetry processing and abolish the SPN. We tested the limits of this claim with a series of eight new Electroencephalography (EEG) experiments (344 participants in total). All experiments used the same symmetrical or asymmetrical dot patterns. When participants attended to regularity in Experiment 1, there was a substantial SPN (Mean amplitude = -2.423 µV). The SPN was reduced, but not abolished, when participants discriminated dot luminance in Experiments 2 and 3 (-.835 and -1.410 µV) or the aspect ratio of a superimposed cross in Experiments 4 and 5 (-.722 and -.601 µV). The SPN also survived when the background pattern was potentially disruptive to the primary task in Experiment 6 (-1.358 µV) and when participants classified negative superimposed words in Experiment 7 (-.510 µV). Finally, the SPN remained when participants attended to the orientation of a diagonal line in Experiment 8 (-.589 µV). While task manipulations can turn down the extrastriate symmetry activation, they cannot render the system completely unresponsive. Permanent readiness to detect reflectional symmetry at the centre of the visual field could be an evolved adaptation.


Subject(s)
Evoked Potentials , Pattern Recognition, Visual , Humans , Pattern Recognition, Visual/physiology , Evoked Potentials/physiology , Electroencephalography , Brain/physiology , Visual Fields
5.
Elife ; 112022 06 15.
Article in English | MEDLINE | ID: mdl-35703370

ABSTRACT

It is now possible for scientists to publicly catalogue all the data they have ever collected on one phenomenon. For a decade, we have been measuring a brain response to visual symmetry called the sustained posterior negativity (SPN). Here we report how we have made a total of 6674 individual SPNs from 2215 participants publicly available, along with data extraction and visualization tools (https://osf.io/2sncj/). We also report how re-analysis of the SPN catalogue has shed light on aspects of the scientific process, such as statistical power and publication bias, and revealed new scientific insights.


Subject(s)
Brain , Electroencephalography , Brain/physiology , Humans
6.
Sci Rep ; 12(1): 1180, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064121

ABSTRACT

Extrastriate visual areas are strongly activated by image symmetry. Less is known about symmetry representation at object-level rather than image-level. Here we investigated electrophysiological responses to symmetry, generated by amodal completion of partially-occluded polygon shapes. We used a similar paradigm in four experiments (N = 112). A fully-visible abstract shape (either symmetric or asymmetric) was presented for 250 ms (t0). A large rectangle covered it entirely for 250 ms (t1) and then moved to one side to reveal one half of the shape hidden behind (t2, 1000 ms). Note that at t2 no symmetry could be extracted from retinal image information. In half of the trials the shape was the same as previously presented, in the other trials it was replaced by a novel shape. Participants matched shapes similarity (Exp. 1 and Exp. 2), or their colour (Exp. 3) or the orientation of a triangle superimposed to the shapes (Exp. 4). The fully-visible shapes (t0-t1) elicited automatic symmetry-specific ERP responses in all experiments. Importantly, there was an exposure-dependent symmetry-response to the occluded shapes that were recognised as previously seen (t2). Exp. 2 and Exp.4 confirmed this second ERP (t2) did not reflect a reinforcement of a residual carry-over response from t0. We conclude that the extrastriate symmetry-network can achieve amodal representation of symmetry from occluded objects that have been previously experienced as wholes.


Subject(s)
Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adolescent , Adult , Female , Form Perception , Humans , Male , Middle Aged , Young Adult
7.
Neuropsychologia ; 163: 108064, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34666111

ABSTRACT

Human perception of symmetry is associated with activation in an extended network of extrastriate visual areas. This activation generates an ERP called the Sustained Posterior Negativity (SPN). In most studies so far, the stimuli have been defined by luminance. We tested whether the SPN is present when stimuli are defined by stereoscopic disparity using random dot stereograms (RDS). In Experiment 1, we compared the SPN signal for contours specified by binocular disparity and contours specified by monocular cues. The SPN was equivalent, suggesting that the type of contour does not alter the SPN signal. In Experiment 2 we exploited the unique property of RDS to provide unambiguous figure-ground arrangements. Psychophysical work has shown that symmetry is more easily detected when it is a property of a single object (i.e., within a figure), compared to a property of a gap between two objects (i.e., the ground). Therefore, the target regions in this experiment could either be foreground or background. The SPN onset was delayed when the symmetry was in a ground region. This may be because object formation interferes with the processing of shape information in the ground region.


Subject(s)
Form Perception , Vision Disparity , Cues , Depth Perception/physiology , Humans , Vision, Binocular/physiology
8.
Psychophysiology ; 58(12): e13941, 2021 12.
Article in English | MEDLINE | ID: mdl-34592790

ABSTRACT

An Event Related Potential response to visual symmetry, known as the Sustained Posterior Negativity (SPN), is generated whether symmetry is task relevant or not, and whether symmetry is attended or not. However, no study has yet examined interference from concurrent memory tasks. To answer this fundamental question, we investigated whether the SPN is robust to variation in Visual Working Memory (VWM) load. In Experiment 1 (N = 24), each trial involved a sample display, a probe and a test display. Sample and test displays contained either four colors or four black shapes, and the probe was either a symmetrical or random pattern. We compared a memory task and a passive viewing task. In the memory task, participants held color or shape information in VWM when the probe was presented. In the passive viewing task, there were no memory demands. Contrary to our predictions, there was no evidence that VWM interfered with the symmetry response. Instead, there was a general SPN enhancement during both color and shape memory tasks compared to passive viewing. In Experiment 2 (N = 24), we used symmetrical patterns themselves as sample and test to maximize interference. Again, the SPN was enhanced in the memory task compared to passive viewing. We conclude that the visual symmetry response is not impaired by concurrent VWM tasks, even when these tasks involve remembering symmetry itself. It seems that the SPN is not only attention-proof, but also memory-proof. This adds to evidence that symmetry perception is robust and automatic.


Subject(s)
Evoked Potentials/physiology , Memory, Short-Term/physiology , Space Perception/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Young Adult
9.
Vision Res ; 188: 1-9, 2021 11.
Article in English | MEDLINE | ID: mdl-34271291

ABSTRACT

In humans, extrastriate visual areas are strongly activated by symmetry. However, perfect symmetry is rare in natural visual images. Recent findings showed that when parts of a symmetric shape are presented at different points in time the process relies on a perceptual memory buffer. Does this temporal integration need a retinotopic reference frame? For the first time we tested integration of parts both in the temporal and spatial domain, using a non-retinotopic frame of reference. In Experiment 1, an irregular polygonal shape (either symmetric or asymmetric) was partly occluded by a rectangle for 500 ms (T1). The rectangle moved to the opposite side to reveal the other half of the shape, whilst occluding the previously visible half (T2). The reference frame for the object was static: the two parts stimulated retinotopically corresponding receptive fields (revealed over time). A symmetry-specific ERP response from ~300 ms after T2 was observed. In Experiment 2 dynamic occlusion was combined with an additional step at T2: the new half-shape and occluder were rotated by 90°. Therefore, there was a moving frame of reference and the retinal correspondence between the two parts was disrupted. A weaker but significant symmetry-specific response was recorded. This result extends previous findings: global symmetry representation can be achieved in extrastriate areas non-retinotopically, through integration in both temporal and spatial domain.


Subject(s)
Visual Cortex , Humans , Retina , Visual Perception
10.
PLoS One ; 16(7): e0254361, 2021.
Article in English | MEDLINE | ID: mdl-34242360

ABSTRACT

An Event Related Potential (ERP) component called the Sustained Posterior Negativity (SPN) is generated by regular visual patterns (e.g. vertical reflectional symmetry, horizontal reflectional symmetry or rotational symmetry). Behavioural studies suggest symmetry becomes increasingly salient when the exemplars update rapidly. In line with this, Experiment 1 (N = 48) found that SPN amplitude increased when three different reflectional symmetry patterns were presented sequentially. We call this effect 'SPN priming'. We then exploited SPN priming to investigate independence of different symmetry representations. SPN priming did not survive changes in retinal location (Experiment 2, N = 48) or non-orthogonal changes in axis orientation (Experiment 3, N = 48). However, SPN priming transferred between vertical and horizontal axis orientations (Experiment 4, N = 48) and between reflectional and rotational symmetry (Experiment 5, N = 48). SPN priming is interesting in itself, and a useful new method for identifying functional boundaries of the symmetry response. We conclude that visual regularities at different retinal locations are coded independently. However, there is some overlap between different regularities presented at the same retinal location.


Subject(s)
Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adolescent , Adult , Electroencephalography , Humans , Male , Middle Aged , Motor Activity/physiology , Young Adult
11.
Eur J Neurosci ; 53(9): 3175-3184, 2021 05.
Article in English | MEDLINE | ID: mdl-33675549

ABSTRACT

Research into the neural basis of symmetry perception has intensified in the last two decades; however, the functional role of neural oscillations remains unclear. In previous work Makin et al. (2014, Journal of Vision, 14, 1-12) and Wright et al. (2015, Psychophysiology, 52, 638-647) examined occipital alpha event-related desynchronization (alpha ERD). It was concluded that alpha ERD is right lateralized during active regularity discrimination but not during a secondary task. Furthermore, alpha ERD was unaffected by stimulus properties, such as the type of regularity. These conclusions are refuted by new time-frequency analysis on an electroencephalography (EEG) data set first introduced by Makin et al. (2020, Journal of Cognitive Neuroscience, 32, 353-366). We compared alpha ERD across five tasks. First, we found that right lateralization of alpha ERD was evident in all tasks, not just active regularity discrimination. This was caused by hemispheric differences in alpha power during prestimulus baseline (left < right), which equalized after stimulus onset (left = right). Second, we found that Alpha ERD increased with the proportion of symmetric elements in the image (PSYMM). Sensitivity to PSYMM was stronger on the right. These findings suggest that known extrastriate symmetry activations are accompanied by reduced alpha power.


Subject(s)
Electroencephalography
12.
Sci Rep ; 11(1): 285, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431986

ABSTRACT

Visual regularity activates a network of brain regions in the extrastriate cortex. Previous EEG studies have found that this response scales parametrically with proportion of symmetry in symmetry + noise displays. The parametric symmetry response happens in many tasks, but it is enhanced during active regularity discrimination. However, the origins and time course of this selective enhancement are unclear. Here we answered remaining questions with new source dipole analysis. As assumed, the parametric symmetry response found at the sensor level was generated by a pair of dipoles in the left and right extrastriate cortex. This bilateral activity was itself enhanced during regularity discrimination. However, we identified a third, and later, symmetry response in the posterior cingulate during regularity discrimination. Unlike the extrastriate response, this previously unknown activation only indexes strong, task relevant regularity signals. This clarifies the neural circuits which mediate the perceptual and cognitive aspects of symmetry discrimination.


Subject(s)
Brain/physiology , Pattern Recognition, Visual , Adult , Brain Mapping , Electroencephalography , Female , Humans , Male , Photic Stimulation , Visual Cortex/physiology
13.
Eur J Neurosci ; 53(4): 964-973, 2021 02.
Article in English | MEDLINE | ID: mdl-32897595

ABSTRACT

It is known that the extrastriate cortex is activated by visual symmetry. This activation generates an ERP component called the Sustained Posterior Negativity (SPN). SPN amplitude increases (i.e., becomes more negative) with repeated presentations. We exploited this SPN priming effect to test whether the extrastriate symmetry response is gated by element luminance polarity. On each trial, participants observed three stimuli (patterns of dots) in rapid succession (500 ms. with 200 ms. gaps). The patterns were either symmetrical or random. The dot elements were either black or white on a grey background. The triplet sequences either showed repeated luminance (black > black > black, or white > white > white) or changing luminance (black > white > black, or white > black > white). As predicted, SPN priming was comparable in repeated and changing luminance conditions. Therefore, symmetry with black elements is not processed independently from symmetry with white elements. Source waveform analysis confirmed that this priming happened within the extrastriate symmetry network. We conclude that the network pools information across luminance polarity channels.


Subject(s)
Electroencephalography , Visual Cortex , Humans , Motor Activity , Pattern Recognition, Visual
14.
PLoS One ; 15(12): e0238554, 2020.
Article in English | MEDLINE | ID: mdl-33382696

ABSTRACT

Previous work has shown that symmetrical stimuli are judged as lasting longer than asymmetrical ones, even when actual duration is matched. This effect has been replicated with different methods and stimuli types. We aimed to a) replicate the effect of symmetry on subjective duration, and b) assess whether it was further modulated by the number of symmetrical axes. There was no evidence for either effect. This null result cannot be explained by reduced statistical power or enhanced floor or ceiling effects. There is no obvious stimulus-based explanation either. However, we are mindful of the reproducibility crisis and file drawer problems in psychology. Other symmetry and time perception researchers should be aware of this null result. One possibility is that the effect of symmetry on subjective duration is limited to very specific experimental paradigms.


Subject(s)
Form Perception/physiology , Pattern Recognition, Visual/physiology , Time Perception/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Psychophysics , Reproducibility of Results , Vision, Ocular/physiology
15.
Iperception ; 11(5): 2041669520946356, 2020.
Article in English | MEDLINE | ID: mdl-33110485

ABSTRACT

Visual symmetry perception and symmetry preference have been studied extensively. However, less is known about how people spontaneously scan symmetrical stimuli with their eyes. We thus examined spontaneous saccadic eye movements when participants (N = 20) observed patterns with horizontal or vertical mirror reflection. We found that participants tend to make saccades along the axis of reflection and that this oculomotor behaviour was similar during objective classification and subjective evaluation tasks. The axis-scanning behaviour generates a dynamic sequence of novel symmetrical images from a single static stimulus. This could aid symmetry perception and evaluation by enhancing the neural response to symmetry.

16.
Vision Res ; 177: 68-75, 2020 12.
Article in English | MEDLINE | ID: mdl-32987356

ABSTRACT

Neurophysiological studies have shown a strong activation in visual areas in response to symmetry. Electrophysiological (EEG) studies, in particular, have confirmed that amplitude at posterior electrodes is more negative for symmetrical compared to asymmetrical patterns. This response is present even when observers perform tasks that do not require processing of symmetry. In this sense the activation is automatic. In this study we test this automaticity more directly by presenting stimuli that contain both symmetry and asymmetry, as overlapping patterns of dots of different colour (black and white). Observers were asked to respond to symmetry in only one of the two colours. If feature-based attention has no role the response should depend on properties of the image. If attention fully filters only the relevant colour the response should depend on properties of the relevant colour only. Neither of these models fully explained the data. We conclude that selective attention does modulate the neural response to symmetry, however we also found a significant contribution from the irrelevant pattern.


Subject(s)
Attention , Electroencephalography , Humans , Pattern Recognition, Visual
17.
J Vis ; 20(5): 11, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32455428

ABSTRACT

Previous research has investigated the neural response to visual symmetry. It is well established that symmetry activates a network of extrastriate visual regions, including V4 and the Lateral Occipital Complex. This symmetry response generates an event-related potential called the sustained posterior negativity (SPN). However, previous work has used abstract stimuli, typically dot patterns or shapes. We tested the generality of the SPN. We confirmed that the SPN wave was present and of similar amplitude for symmetrical shapes, flowers and landscapes, whether participants were responding either to image symmetry or to image color. We conclude that the extrastriate symmetry response can be generated by any two-dimensional image and is similar in different stimulus domains.


Subject(s)
Brain/physiology , Electroencephalography , Evoked Potentials , Pattern Recognition, Visual/physiology , Adolescent , Adult , Female , Flowers , Humans , Male , Middle Aged , Young Adult
18.
Eur J Neurosci ; 52(3): 3032-3046, 2020 08.
Article in English | MEDLINE | ID: mdl-32090390

ABSTRACT

The holographic weight of evidence model (van der Helm & Leeuwenberg, J Math Psychol, 35, 1991, 151; van der Helm & Leeuwenberg, Psychol Rev, 103, 1996, 429) estimates that the perceptual goodness of moiré structures (Glass patterns), irrespective of their global form, is comparable to that of reflection symmetry. However, both behavioural and neuroscience evidences suggest that certain Glass forms (i.e. circular and radial structures) are perceptually more salient than others (i.e. translation structures) and may recruit different perceptual mechanisms. In this study, we tested whether brain responses for circular, radial and translation Glass patterns are comparable to the response for onefold bilateral reflection symmetry. We recorded an event-related potential (ERP), called the sustained posterior negativity (SPN), which has been shown to index perceptual goodness of a range of regularities. We found that circular and radial Glass patterns generated a comparable SPN amplitude to onefold reflection symmetry (in line with the prediction of the holographic model), starting approx. 180 ms after stimulus onset. Conversely, the SPN response to translation Glass patterns had a longer latency (approx. 400 ms). These results show that Glass patterns are a special case of visual regularity, and perceptual goodness may not be fully explained by the holographic identities that constitute it. Specialised processing mechanisms might exist in the regularity-sensitive extrastriate areas, which are tuned to global form configurations.


Subject(s)
Neurosciences , Pattern Recognition, Visual , Brain , Electroencephalography , Evoked Potentials , Photic Stimulation
19.
Eur J Neurosci ; 51(3): 922-936, 2020 02.
Article in English | MEDLINE | ID: mdl-31529733

ABSTRACT

People can quickly detect bilateral reflection in an image. This is true when elements of the same luminance are matched on either side of the axis (symmetry) and when they have opposite luminance polarity (anti-symmetry). Using electroencephalography, we measured the well-established sustained posterior negativity (SPN) response to symmetry and anti-symmetry. In one task, participants judged the presence or absence of regularity (Regularity Discrimination Task). In another, they judged the presence or absence of rare colored oddball trials (Colored Oddball Task). Previous work has concluded that anti-symmetry is only detected indirectly, through serial visual search of element locations. This selective attention account predicts that the anti-symmetry SPN should be abolished in the Colored Oddball Task because there is no need to search for anti-symmetry. However, this prediction was not confirmed: The symmetry and anti-symmetry SPN waves were not modulated by task. We conclude that at least some forms of anti-symmetry can be extracted from the image automatically, in much the same way as symmetry. This is an important consideration for models of symmetry perception, which must be flexible enough to accommodate opposite luminance polarity, while also accounting for the fact anti-symmetry is often perceptually weaker than symmetry.


Subject(s)
Visual Cortex , Attention , Electroencephalography , Humans , Pattern Recognition, Visual , Photic Stimulation
20.
J Cogn Neurosci ; 32(2): 353-366, 2020 02.
Article in English | MEDLINE | ID: mdl-31633466

ABSTRACT

The brain can organize elements into perceptually meaningful gestalts. Visual symmetry is a useful tool to study gestalt formation, and we know that there are symmetry-sensitive regions in the extrastriate cortex. However, it is unclear whether symmetrical gestalt formation happens automatically, whatever the participant's current task is. Does the visual brain always organize and interpret the retinal image when possible, or only when necessary? To test this, we recorded an ERP called the sustained posterior negativity (SPN). SPN amplitude increases with the proportion of symmetry in symmetry + noise displays. We compared the SPN across five tasks with different cognitive and perceptual demands. Contrary to our predictions, the SPN was the same across four of the five tasks but selectively enhanced during active regularity discrimination. Furthermore, during regularity discrimination, the SPN was present on hit trials and false alarm trials but absent on miss and correct rejection trials. We conclude that gestalt formation is automatic and task-independent, although it occasionally fails on miss trials. However, it can be enhanced by attention to visual regularity.


Subject(s)
Cerebral Cortex/physiology , Color Perception/physiology , Discrimination, Psychological/physiology , Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Pitch Perception/physiology , Space Perception/physiology , Adolescent , Adult , Attention/physiology , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...