Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(22): 4714-4723, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36381507

ABSTRACT

The proton exchange membrane (PEM) is the main component that determines the performance of polymer electrolyte fuel cells. The construction of proton-conduction channels capable of fast proton conduction is an important topic in PEM research. In this study, we have developed poly(vinylphosphonic acid)-block-polystyrene (PVPA-b-PS)-coated core-shell type silica nanoparticles prepared by in situ polymerization and a core-shell type nanoparticle-filled PEM. In this system, two-dimensional (2D) proton-conduction channels have been constructed between PVPA and the surface of silica nanoparticles, and three-dimensional proton-conduction channels were constructed by connecting these 2D channels by filling with the core-shell type nanoparticles. The proton conductivities and activation energies of pelletized PVPA-coated core-shell type nanoparticles increased depending on the coated PVPA thickness. Additionally, pelletized PVPA-b-PS-coated silica nanoparticles showed a good proton conductivity of 1.3 × 10-2 S cm-1 at 80 °C and 95% RH. Also, the membrane state achieved 1.8 × 10-4 S cm-1 in a similar temperature and humidity environment. Although these proton conductivities were lower than those of PVPA, they have advantages such as low activation energy for proton conduction, suppression of swelling due to water absorption, and the ability to handle samples in powder form. Moreover, by using PS simultaneously, we succeeded in improving the stability of proton conductivity against changes in the temperature and humidity environment. Therefore, we have demonstrated a highly durable, tough but still enough high proton conductive material by polymer coating onto the surface of nanoparticles and also succeeded in constructing proton-conduction channels through the easy integration of core-shell type nanoparticles.

2.
J Artif Organs ; 10(3): 158-64, 2007.
Article in English | MEDLINE | ID: mdl-17846714

ABSTRACT

We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.


Subject(s)
Heart-Assist Devices , Ventricular Function, Left/physiology , Cardiac Output/physiology , Heart Diseases/surgery , Hemorheology , Humans , Models, Cardiovascular , Prosthesis Design , Pulsatile Flow
3.
J Artif Organs ; 9(2): 77-83, 2006.
Article in English | MEDLINE | ID: mdl-16807809

ABSTRACT

We have been developing an implantable battery system using three series-connected lithium ion batteries having an energy capacity of 1,800 mAh to drive an undulation pump left ventricular assist device. However, the lithium ion battery undergoes an exothermic reaction during the discharge phase, and the temperature rise of the lithium ion battery is a critical issue for implantation usage. Heat generation in the lithium ion battery depends on the intensity of the discharge current, and we obtained a relationship between the heat flow from the lithium ion battery q(c)(I) and the intensity of the discharge current I as q(c)(I) = 0.63 x I (W) in in vitro experiments. The temperature distribution of the implantable battery system was estimated by means of three-dimentional finite-element method (FEM) heat transfer analysis using the heat flow function q(c)(I), and we also measured the temperature rise of the implantable battery system in in vitro experiments to conduct verification of the estimation. The maximum temperatures of the lithium ion battery and the implantable battery case were measured as 52.2 degrees C and 41.1 degrees C, respectively. The estimated result of temperature distribution of the implantable battery system agreed well with the measured results using thermography. In conclusion, FEM heat transfer analysis is promising as a tool to estimate the temperature of the implantable lithium ion battery system under any pump current without the need for animal experiments, and it is a convenient tool for optimization of heat transfer characteristics of the implantable battery system.


Subject(s)
Electric Power Supplies , Equipment and Supplies , Heart, Artificial , Hot Temperature , Finite Element Analysis , Lithium , Temperature
4.
Artif Organs ; 30(5): 360-4, 2006 May.
Article in English | MEDLINE | ID: mdl-16683953

ABSTRACT

We have developed an automatic diagnosis system of an artificial heart in order to ensure the safety of the patient implanted with the artificial heart. The automatic diagnosis system is composed of an electro-stethoscope system, adaptive noise canceller (ANC), and artificial neural network (ANN). The ANC effectively eliminates ambient noise from the sound signal of the artificial heart detected by the electro-stethoscope, and a filtered sound signal is separated into each frequency components by fast Fourier transformation. Each frequency component of an artificial heart's acoustic signal is fed into the ANN in order to make a diagnosis of pump condition. The automatic diagnosis system was evaluated in mock circulatory tests and a long-term animal experiment using a goat implanted with an undulation pump ventricular assist device (UPVAD). In mock circulatory tests, the ANN was able to detect pump failing conditions, which were occlusion of inflow and outflow cannula and deterioration of the ball bearing. In a long-term animal experiment, after training the ANN using UPVAD's sound signal in normal condition, the diagnosis system continuously monitored UPVAD's sound signal detected by the electro-stethoscope placed on the surface of the left thoracic cavity of the goat. The UPVAD was stopped by rupture of a diaphragm in the pump on the ninth day of operation. We were able to identify initial signs of malfunction of the pump on the eighth day, while the UPVAD was able to operate normally. In conclusion, the automatic diagnosis system for malfunction of the artificial heart has enough performance to detect early stages of malfunction of the artificial heart, and it contributes to ensure the patient's safety.


Subject(s)
Heart Sounds , Heart-Assist Devices , Prosthesis Failure , Animals , Early Diagnosis , Goats
5.
Artif Organs ; 30(5): 403-5, 2006 May.
Article in English | MEDLINE | ID: mdl-16683960

ABSTRACT

In this study, we have developed an implantable electronics unit (IEU) for driving an undulation pump-left ventricular assist device (UP-LVAD). The IEU consists of a pump driver, three series-connected lithium ion batteries (1800 mAh), a charger, and a transcutaneous information transmission system. These electronic subunits were encapsulated in a case (110 x approximately 80 x approximately 30 mm) made of epoxy resin. The IEU was evaluated in two animal experiments using goats implanted with the UP-LVAD. The lithium ion batteries in the IEU provided 30-min energy supply daily to the UP-LVAD. The transcutaneous information transmission system transmitted data bidirectionally between the IEU and the personal computer at the data transmission ratio of 56 kbps without any transmission error. We could obtain survival days of 27 and 28 days supporting cardiac function with the UP-LVAD system. The temperature inside the IEU case was maintained under 45 degrees C, and there was evidence of a burn on the surrounding tissue in autopsies in each experiment. Based on the results, the IEU is promising to be suitable for drive and control of an implantable UP-LVAD.


Subject(s)
Computer Peripherals , Electric Power Supplies , Heart-Assist Devices , Animals , Biomedical Engineering , Electronics, Medical , Goats , Prosthesis Design
6.
J Artif Organs ; 8(3): 149-53, 2005.
Article in English | MEDLINE | ID: mdl-16235031

ABSTRACT

We have developed a wavelength division bidirectional transcutaneous optical data transmission system using amplitude shift keying (ASK) modulation. The bidirectional optical data transmission system consists of two kinds of light emitting diodes (LEDs) having different wavelengths and an ASK modulator and demodulator. Two narrow directional visible LEDs with a peak output wavelength of 590 nm were used to transmit data from inside the body to outside the body, and a narrow directional near-infrared LED with a peak output wavelength of 940 nm was used for transmission from outside the body to inside the body. The ASK modulator employs a carrier pulse signal (50 kHz) to support a maximum data transmission rate of 9600 bps. An in vitro experiment showed that the maximum tissue thickness of near-infrared optical data transmission without error was 45 mm; the figure was 20 mm for visible optical data transmission. There was no interference between the signals under full-duplex data transmission. Electric power consumption for the data transmission links was 122 mW for near-infrared light and 162 mW (81 mW x 2) for visible light. From the above results, a bidirectional transcutaneous optical data transmission system promises adequate performance for monitoring and control of an artificial heart.


Subject(s)
Heart, Artificial , Monitoring, Physiologic , Telemetry , Equipment Design , Humans , Infrared Rays , Light , Optics and Photonics , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...