Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930587

ABSTRACT

We present the validity of using an ultrasensitive enzyme-linked immunosorbent assay (ELISA) for quantifying high-risk human papillomavirus (HPV) 16 E7 oncoproteins in urine specimens as a noninvasive method of analyzing the oncogenic activity of HPV. Some reports claim that the oncogenic activity of HPV is a more relevant clinical indicator than the presence of HPV DNA for estimating malignant potential. In the present study, urine containing HPV16 and related types were selected by uniplex E6/E7 polymerase chain reaction and classified according to the pathologic diagnosis of cervical intraepithelial neoplasia (CIN) in cervical biopsy specimens. Our ultrasensitive ELISA was able to detect attomole levels of HPV16 E7 oncoproteins, and it detected HPV16-positive SiHa cells at >500 cells/mL without detecting HPV18-positive cells. Our ELISA results showed E7 oncoproteins in 80% (4/5) of urine specimens from women with HPV16-positive CIN1, 71% (5/7) of urine specimens from CIN2 patients, and 38% (3/8) of urine specimens from CIN3 patients. Some urine specimens with undetectable E7 oncoproteins were thought to be negative for live HPV 16-positive cells or in an inactivated state of infection. These results provide the basis for assessing oncogenic activity by quantifying E7 oncoproteins in patient urine.

2.
J Clin Med ; 10(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34768717

ABSTRACT

An enzyme-linked immunosorbent assay (ELISA) can be used for quantitative measurement of proteins, and improving the detection sensitivity to the ultrasensitive level would facilitate the diagnosis of various diseases. In the present review article, we first define the term 'ultrasensitive'. We follow this with a survey and discussion of the current literature regarding modified ELISA methods with ultrasensitive detection and their application for diagnosis. Finally, we introduce our own newly devised system for ultrasensitive ELISA combined with thionicotinamide adenine dinucleotide cycling and its application for the diagnosis of infectious diseases and lifestyle-related diseases. The aim of the present article is to expand the application of ultrasensitive ELISAs in the medical and biological fields.

3.
Microorganisms ; 9(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34835340

ABSTRACT

To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10-19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.

4.
Anal Sci ; 37(10): 1469-1472, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-33746140

ABSTRACT

An enzyme immunoassay, in which an enzyme (e.g., alkaline phosphatase, ALP) is conjugated with an antibody, is a precise and simple protein detection method. Precise measurements of enzymes at low concentrations allow for ultrasensitive protein detection. The application of a phosphorylated substrate to ALP, followed by using a dephosphorylated substrate in thionicotinamide-adenine dinucleotide cycling, provides a simple and precise quantification of ALP. We describe a protocol for detecting ALP at the zeptomole level using a simple colorimetric method.


Subject(s)
Alkaline Phosphatase , Colorimetry , Immunoenzyme Techniques , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...