Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 41(5): 541-551, 2016.
Article in English | MEDLINE | ID: mdl-27379836

ABSTRACT

PURPOSE: To investigate the bond strength performance of multimode adhesives (MMAs) to indirect resin composite and lithium disilicate glass ceramic after 24 hours or one year of water storage. METHODS AND MATERIALS: Thirty flat and polished plates of indirect resin composite (Epricord) and thirty lithium disilicate glass ceramic plates (IPS e.max Press) were prepared. Surfaces were pretreated using sandblasting (indirect resin composite) or hydrofluoric acid (glass-based ceramic). Specimens were bonded with one of two MMAs (Scotchbond Universal [SBU] or All-Bond Universal [ABU]) or ceramic primer and hydrophobic bonding (RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Bond) as a control (n=10). Resin cement cylinders (0.75 mm in diameter × 0.5 mm in height) were bonded to both substrate surfaces using the respective adhesives. After 24 hours or one year of water storage, bonding performance was measured by microshear bond strength (MSBS) testing. Results were analyzed using three-way ANOVA with Bonferroni post hoc tests (α=0.05). RESULTS: For indirect resin composite, significantly higher MSBS values were found for ABU after 24 hours (ABU > SBU = control); however, no significant difference among the adhesives was observed after one year (p>0.05). For glass-based ceramic, significantly different bond strengths were observed among the adhesives after 24 hours (control = ABU > SBU) and one year (control > SBU = ABU; p<0.05). CONCLUSIONS: Both MMAs tested can be considered effective alternatives for bonding to sandblasted indirect resin composite after aging, as they showed similar bond performance to that of the control group. However, separate bottles of silane bonding resin showed higher MSBS values and more durable bonding for etched glass-based ceramic.

2.
Oper Dent ; 41(3): 305-17, 2016.
Article in English | MEDLINE | ID: mdl-26666389

ABSTRACT

PURPOSE: To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. METHODS: Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. RESULTS: The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, p<0.05), and no significant differences were found among the adhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). CONCLUSIONS: In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.


Subject(s)
Dental Bonding , Dental Enamel , Dentin-Bonding Agents , Composite Resins , Dental Cements , Dentin , Humans , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...