Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 25(6): e13487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877765

ABSTRACT

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.


Subject(s)
Amino Acid Substitution , Nicotiana , Potyvirus , Viral Proteins , Virulence/genetics , Nicotiana/virology , Potyvirus/pathogenicity , Potyvirus/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Plant Diseases/virology , Chimera , Plum Pox Virus/pathogenicity , Plum Pox Virus/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mutation/genetics
2.
Plants (Basel) ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079643

ABSTRACT

A viral chimera in which the P1-HCPro bi-cistron of a plum pox virus construct (PPV-GFP) was replaced by that of potato virus Y (PVY) spread slowly systemically in Nicotiana benthamiana plants and accumulated to levels that were 5-10% those of parental PPV-GFP. We tested whether consecutive mechanical passages could increase its virulence, and found that after several passages, chimera titers rose and symptoms increased. We sequenced over half the genome of passaged chimera lineages infecting two plants. The regions sequenced were 5'NCR-P1-HCPro-P3; Vpg/NIa; GFP-CP, because of being potential sites for mutations/deletions leading to adaptation. We found few substitutions, all non-synonymous: two in one chimera (nt 2053 HCPro, and 5733 Vpg/NIa), and three in the other (2359 HCPro, 5729 Vpg/NIa, 9466 CP). HCPro substitutions 2053 AUU(Ile)→ACU(Thr), and 2359 CUG(Leu)→CGG(Arg) occurred at positions where single nucleotide polymorphisms were observed in NGS libraries of sRNA reads from agroinfiltrated plants (generation 1). Remarkably, position 2053 was the only one in the sequenced protein-encoding genome in which polymorphisms were common to the four libraries, suggesting that selective pressure existed to alter that specific nucleotide, previous to any passage. Mutations 5729 and 5733 in the Vpg by contrast did not correlate with polymorphisms in generation 1 libraries. Reverse genetics showed that substitution 2053 alone increased several-fold viral local accumulation, speed of systemic spread, and systemic titers.

3.
Plants (Basel) ; 10(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071353

ABSTRACT

The contribution of the HCPro factors expressed by several PVY isolates of different geographical origins (one from Scotland, one from Spain, and several from Tunisia) to differences in their virulence in Nicotiana benthamiana plants was investigated under two growing conditions: standard (st; 26 °C and current ambient levels of CO2), and climate change-associated (cc; 31 °C and elevated levels of CO2). In all cases, relative infection symptoms and viral titers were determined. The viral HCPro cistrons were also sequenced and amino-acid features of the encoded proteins were established, as well as phylogenetic distances. Additionally, the abilities of the HCPros of several isolates to suppress silencing were assessed under either growing condition. Overall, viral titers and infection symptoms decreased under cc vs. st conditions. However, within each growing condition, relative titers and symptoms were found to be isolate-specific, with titers and symptom severities not always correlating. Crucially, isolates expressing identical HCPros displayed different symptoms. In addition, all HCPro variants tested displayed comparable silencing suppression strengths. Therefore, HCPro alone could not be the main determinant of the relative differences in pathogenicity observed among the PVY isolates tested in this host, under the environments considered.

4.
Plants (Basel) ; 10(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805277

ABSTRACT

Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants represents an attractive alternative to transgene-based silencing approaches. However, improvement of dsRNA stability in natural conditions is required in order to provide long-term protection against the targeted virus. Here, we tested the protective effect of topical application of Escherichia coli-encapsulated dsRNA compared to naked dsRNA against single and dual infection by Potato virus X expressing the green fluorescent protein (PVX-GFP) and Potato virus Y (PVY) in Nicotiana benthamiana. We found that, in our conditions, the effectiveness of E. coli-encapsulated dsRNA in providing RNAi-mediated protection did not differ from that of naked dsRNA. dsRNA vaccination was partly effective against a dual infection by PVX-GFP and PVY, manifested by a delay in the expression of the synergistic symptoms at early times after inoculation. Using PVX-GFP as a reporter virus together with a suite of RNAi knockdown transgenic lines, we have also shown that RNA-directed RNA polymerase 6 and the combined activities of DICER-like 2 (DCL2) and DCL4 act to promote efficient resistance to virus infection conferred by topical application of dsRNA in N. benthamiana. Our results provide evidence that exogenous dsRNA molecules are processed by the RNA silencing pathways commonly used by the host in response to virus infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...