Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Euro Surveill ; 29(19)2024 May.
Article in English | MEDLINE | ID: mdl-38726693

ABSTRACT

BackgroundAntimicrobial resistance to mupirocin and fusidic acid, which are used for treatment of skin infections caused by Staphylococcus aureus, is of concern.AimTo investigate resistance to fusidic acid and mupirocin in meticillin-susceptible S. aureus (MSSA) from community-acquired skin and soft tissue infections (SSTIs) in Belgium.MethodsWe collected 2013-2023 data on fusidic acid and mupirocin resistance in SSTI-associated MSSA from two large Belgian laboratories. Resistant MSSA isolates sent to the Belgian Staphylococci Reference Centre were spa-typed and analysed for the presence of the eta and etb virulence genes and the mupA resistance gene. In addition, we whole genome sequenced MSSA isolates collected between October 2021 and September 2023.ResultsMupirocin resistance increased between 2013 and 2023 from 0.5-1.5% to 1.7-5.6%. Between 2018 and 2023, 91.4% (64/70) of mupirocin-resistant isolates were co-resistant to fusidic acid. By September 2023, between 8.9% (15/168) and 10.1% (11/109) of children isolates from the two laboratories were co-resistant. Of the 33 sequenced isolates, 29 were sequence type 121, clonal and more distantly related to the European epidemic fusidic acid-resistant impetigo clone (EEFIC) observed in Belgium in 2020. These isolates carried the mupA and fusB genes conferring resistance to mupirocin and fusidic acid, respectively, and the eta and etb virulence genes.ConclusionWe highlight the spread of a mupirocin-resistant EEFIC in children, with a seasonal trend for the third quarter of the year. This is of concern because this variant is resistant to the two main topical antibiotics used to treat impetigo in Belgium.


Subject(s)
Drug Resistance, Bacterial , Fusidic Acid , Mupirocin , Staphylococcal Skin Infections , Staphylococcus aureus , Belgium/epidemiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fusidic Acid/pharmacology , Genome, Bacterial/genetics , Impetigo/microbiology , Mupirocin/pharmacology , Staphylococcal Skin Infections/epidemiology , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Virulence Factors/genetics , Humans
2.
Euro Surveill ; 29(7)2024 Feb.
Article in English | MEDLINE | ID: mdl-38362626

ABSTRACT

BackgroundAntimicrobial resistance (AMR) of Mycoplasma genitalium (MG) is a growing concern worldwide and surveillance is needed. In Belgium, samples are sent to the National Reference Centre of Sexually Transmitted Infections (NRC-STI) on a voluntary basis and representative or robust national AMR data are lacking.AimWe aimed to estimate the occurrence of resistant MG in Belgium.MethodsBetween July and November 2022, frozen remnants of MG-positive samples from 21 Belgian laboratories were analysed at the NRC-STI. Macrolide and fluoroquinolone resistance-associated mutations (RAMs) were assessed using Sanger sequencing of the 23SrRNA and parC gene. Differences in resistance patterns were correlated with surveillance methodology, socio-demographic and behavioural variables via Fisher's exact test and logistic regression analysis.ResultsOf the 244 MG-positive samples received, 232 could be sequenced for macrolide and fluoroquinolone RAMs. Over half of the sequenced samples (55.2%) were resistant to macrolides. All sequenced samples from men who have sex with men (MSM) (24/24) were macrolide-resistant. Fluoroquinolone RAMs were found in 25.9% of the samples and occurrence did not differ between socio-demographic and sexual behaviour characteristics.ConclusionAlthough limited in sample size, our data suggest no additional benefit of testing MG retrieved from MSM for macrolide resistance in Belgium, when making treatment decisions. The lower occurrence of macrolide resistance in other population groups, combined with emergence of fluoroquinolone RAMs support macrolide-resistance testing in these groups. Continued surveillance of resistance in MG in different population groups will be crucial to confirm our findings and to guide national testing and treatment strategies.


Subject(s)
Mycoplasma Infections , Mycoplasma genitalium , Sexual and Gender Minorities , Sexually Transmitted Diseases , Male , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Homosexuality, Male , Mycoplasma genitalium/genetics , Belgium/epidemiology , Macrolides/pharmacology , Drug Resistance, Bacterial/genetics , Mycoplasma Infections/drug therapy , Mycoplasma Infections/epidemiology , Mutation , RNA, Ribosomal, 23S/genetics , Fluoroquinolones/pharmacology
4.
J Clin Microbiol ; 59(10): e0094621, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34346714

ABSTRACT

Achromobacter spp. are increasingly reported among cystic fibrosis patients. Genotyping requires time-consuming methods such as multilocus sequence typing or pulsed-field gel electrophoresis. Therefore, data on the prevalence of multiresistant epidemic clones, especially A. xylosoxidans ST137 (AxST137) and the Danish epidemic strain A. ruhlandii (DES), are lacking. We recently developed and published a database for Achromobacter species identification by matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF MS; Bruker Daltonics). The aim of this study was to evaluate the ability of the MALDI-TOF MS to distinguish these multiresistant epidemic clones within Achromobacter species. All the spectra of A. xylosoxidans (n = 1,571) and A. ruhlandii (n = 174) used to build the local database were analyzed by ClinProTools, MALDI Biotyper PCA, MALDI Biotyper dendrogram, and flexAnalysis software for biomarker peak detection. Two hundred two isolates (including 48 isolates of AxST137 and 7 of DES) were tested. Specific biomarker peaks were identified: absent peak at m/z 6,651 for AxST137 isolates and present peak at m/z 9,438 for DES isolates. All tested isolates were well typed by our local database and clustered within distinct groups (ST137 or non-ST137 and DES or non-DES) no matter the MALDI-TOF software or only by simple visual inspection of the spectra by any user. The use of MALDI-TOF MS allowed us to identify isolates of A. xylosoxidans belonging to the AxST137 clone that spread in France and Belgium (the Belgian epidemic clone) and of A. ruhlandii belonging to the DES clone. This tool will help the implementation of segregation measures to avoid interpatient transmission of these resistant clones.


Subject(s)
Achromobacter denitrificans , Achromobacter , Cystic Fibrosis , Epidemics , Achromobacter denitrificans/genetics , Clone Cells , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...