Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Geroscience ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589671

ABSTRACT

Reduced insulin/IGF-1 signalling (rIIS) improves survival across diverse taxa and there is a growing interest in its role in regulating immune function. Whilst rIIS can improve anti-bacterial resistance, the consequences for anti-viral immunity are yet to be systematically examined. Here, we show that rIIS in adult Caenorhabditis elegans increases the expression of key genes in two different anti-viral immunity pathways, whilst reducing viral load in old age, increasing survival and reducing rate-of-senescence under infection by naturally occurring positive-sense single-stranded RNA Orsay virus. We found that both drh-1 in the anti-viral RNA interference (RNAi) pathway and cde-1 in the terminal uridylation-based degradation of viral RNA pathway were upregulated in early adulthood under rIIS and increased anti-viral resistance was not associated with reproductive costs. Remarkably, rIIS increased anti-viral gene expression only in infected worms, potentially to curb the costs of constitutively upregulated immunity. RNA viruses are found across taxa from plants to mammals and we demonstrate a novel role for rIIS in regulating resistance to viral infection. We therefore highlight this evolutionarily conserved signalling pathway as a promising therapeutic target to improve anti-viral immunity.

2.
PLoS Biol ; 22(2): e3002513, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412150

ABSTRACT

Why and how we age are 2 intertwined questions that have fascinated scientists for many decades. However, attempts to answer these questions remain compartmentalized, preventing a comprehensive understanding of the aging process. We argue that the current lack of knowledge about the evolution of aging mechanisms is due to a lack of clarity regarding evolutionary theories of aging that explicitly involve physiological processes: the disposable soma theory (DST) and the developmental theory of aging (DTA). In this Essay, we propose a new hierarchical model linking genes to vital rates, enabling us to critically reevaluate the DST and DTA in terms of their relationship to evolutionary genetic theories of aging (mutation accumulation (MA) and antagonistic pleiotropy (AP)). We also demonstrate how these 2 theories can be incorporated in a unified hierarchical framework. The new framework will help to generate testable hypotheses of how the hallmarks of aging are shaped by natural selection.


Subject(s)
Biological Evolution , Longevity , Longevity/genetics , Mutation Accumulation , Selection, Genetic
3.
Evol Lett ; 7(6): 478-489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045724

ABSTRACT

The effect of parental age on germline mutation rate across generations is not fully understood. While some studies report a positive linear relationship of mutation rate with increasing age, others suggest that mutation rate varies with age but not in a linear fashion. We investigated the effect of parental age on germline mutations by generating replicated mutation accumulation lines in Caenorhabditis remanei at three parental ages ("Young T1" [Day 1], "Peak T2" [Day 2], and "Old T5" [Day 5] parents). We conducted whole-genome resequencing and variant calling to compare differences in mutation rates after three generations of mutation accumulation. We found that Peak T2 lines had an overall reduced mutation rate compared to Young T1 and Old T5 lines, but this pattern of the effect varied depending on the variant impact. Specifically, we found no high-impact variants in Peak T2 lines, and modifiers and up- and downstream gene variants were less frequent in these lines. These results suggest that animals at the peak of reproduction have better DNA maintenance and repair compared to young and old animals. We propose that C. remanei start to reproduce before they optimize their DNA maintenance and repair, trading the benefits of earlier onset of reproduction against offspring mutation load. The increase in offspring mutation load with age likely represents germline senescence.

4.
J Gerontol A Biol Sci Med Sci ; 78(12): 2230-2239, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37694551

ABSTRACT

Males and females rarely express the same length of life. Here, we studied how sociosexual exposure shapes male and female age-specific mortality rates in Drosophila melanogaster. We maintained focal females and males within large, replicated cohorts throughout life with individuals of the same or opposite sex. Consistent with previous works, we found that females kept throughout their lives with males had only half the lifespan of those maintained throughout life at the same density in same-sex cohorts. In contrast, only a small lifespan decrease was observed in the corresponding male treatments and the reduction in male lifespan following exposure throughout life to other males or females was similar. Deconvolution of underlying aging parameters revealed that changes in lifespan were underpinned by opposing effects on actuarial aging in males versus females. Exposure to the opposite or same sex increased initial mortality rate in both sexes. However, in females, increasing exposure to males increased the rate of aging, while increasing exposure to females actually decreased it. The effects were in the opposite direction in males and were much smaller in magnitude. Overall, the findings were consistent with reports suggesting that exposure to the same versus opposite sex can affect survival differently in males and females. However, they also reveal a new insight-that overall lifespan can be underpinned by key differences in actuarial senescence in each sex. The findings suggest that responses to same or opposite sex exposure may have fundamentally and qualitatively different physiological consequences for health in males and females.


Subject(s)
Aging , Drosophila melanogaster , Animals , Male , Female , Humans , Drosophila melanogaster/physiology , Longevity , Sex Factors
6.
Proc Biol Sci ; 290(1996): 20221556, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37040805

ABSTRACT

Fasting increases lifespan in invertebrates, improves biomarkers of health in vertebrates and is increasingly proposed as a promising route to improve human health. Nevertheless, little is known about how fasted animals use resources upon refeeding, and how such decisions affect putative trade-offs between somatic growth and repair, reproduction and gamete quality. Such fasting-induced trade-offs are based on strong theoretical foundations and have been recently discovered in invertebrates, but the data on vertebrates are lacking. Here, we report that fasted female zebrafish, Danio rerio, increase investment in soma upon refeeding, but it comes at a cost of egg quality. Specifically, an increase in fin regrowth was accompanied by a reduction in 24 h post-fertilization offspring survival. Refed males showed a reduction in sperm velocity and impaired 24 h post-fertilization offspring survival. These findings underscore the necessity of considering the impact on reproduction when assessing evolutionary and biomedical implications of lifespan-extending treatments in females and males and call for careful evaluation of the effects of intermittent fasting on fertilization.


Subject(s)
Semen , Zebrafish , Animals , Humans , Male , Female , Fasting , Reproduction , Germ Cells , Invertebrates
7.
Evolution ; 76(12): 2829-2845, 2022 12.
Article in English | MEDLINE | ID: mdl-36199198

ABSTRACT

Adulthood-only downregulation of insulin/IGF-1 signaling (IIS), an evolutionarily conserved pathway regulating resource allocation between somatic maintenance and reproduction, increases life span without fecundity cost in the nematode, Caenorhabditis elegans. However, long-term multigenerational effects of reduced IIS remain unexplored and are proposed to carry costs for offspring quality. To test this hypothesis, we ran a mutation accumulation (MA) experiment and downregulated IIS in half of the 400 MA lines by silencing daf-2 gene expression using RNA interference (RNAi) across 40 generations. Contrary to the prediction, adulthood-only daf-2 RNAi reduced extinction of MA lines both under UV-induced and spontaneous MA. Fitness of the surviving UV-induced MA lines was higher under daf-2 RNAi. Reduced IIS increased intergenerational F1 offspring fitness under UV stress but had no quantifiable transgenerational effects. Functional hrde-1 was required for the benefits of multigenerational daf-2 RNAi. Overall, we found net benefit to fitness from multigenerational reduction of IIS and the benefits became more apparent under stress. Because reduced daf-2 expression during development carries fitness costs, we suggest that our findings are best explained by the developmental theory of ageing, which maintains that the decline in the force of selection with age results in poorly regulated gene expression in adulthood.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Insulin/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Down-Regulation , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Mutation , Longevity/genetics , Aging , Reproduction
8.
Proc Biol Sci ; 288(1963): 20211787, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34814748

ABSTRACT

Dietary restriction (DR) improves survival across a wide range of taxa yet remains poorly understood. The key unresolved question is whether this evolutionarily conserved response to temporary lack of food is adaptive. Recent work suggests that early-life DR reduces survival and reproduction when nutrients subsequently become plentiful, thereby challenging adaptive explanations. A new hypothesis maintains that increased survival under DR results from reduced costs of overfeeding. We tested the adaptive value of DR response in an outbred population of Drosophila melanogaster fruit flies. We found that DR females did not suffer from reduced survival upon subsequent re-feeding and had increased reproduction and mating success compared to their continuously fully fed (FF) counterparts. The increase in post-DR reproductive performance was of sufficient magnitude that females experiencing early-life DR had the same total fecundity as continuously FF individuals. Our results suggest that the DR response is adaptive and increases fitness when temporary food shortages cease.


Subject(s)
Caloric Restriction , Longevity , Animals , Drosophila melanogaster/physiology , Female , Fertility/physiology , Longevity/physiology , Reproduction
9.
Proc Biol Sci ; 288(1960): 20211843, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34641727

ABSTRACT

Old parental age is commonly associated with negative effects on offspring life-history traits. Such parental senescence effects are predicted to have a cumulative detrimental effect over successive generations. However, old parents may benefit from producing higher quality offspring when these compete for seasonal resources. Thus, old parents may choose to increase investment in their offspring, thereby producing fewer but larger and more competitive progeny. We show that Caenorhabditis elegans hermaphrodites increase parental investment with advancing age, resulting in fitter offspring who reach their reproductive peak earlier. Remarkably, these effects increased over six successive generations of breeding from old parents and were subsequently reversed following a single generation of breeding from a young parent. Our findings support the hypothesis that offspring of old parents receive more resources and convert them into increasingly faster life histories. These results contradict the theory that old parents transfer a cumulative detrimental 'ageing factor' to their offspring.


Subject(s)
Life History Traits , Reproduction , Age Factors
10.
Evol Lett ; 5(5): 551-564, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34621540

ABSTRACT

The theory that ageing evolves because of competitive resource allocation between the soma and the germline has been challenged by studies showing that somatic maintenance can be improved without impairing reproduction. However, it has been suggested that cost-free improvement in somatic maintenance is possible only under a narrow range of benign conditions. Here, we show that experimental downregulation of insulin/IGF-1 signaling (IIS) in C. elegans nematodes, a robustly reproducible life span- and health span-extending treatment, reduces fitness in a complex variable environment when initiated during development but does not reduce fitness when initiated in adulthood. Thus, our results show that the costs and benefits of reduced IIS can be uncoupled when organisms inhabit variable environments, and, therefore, do not provide support for the resource allocation theory. Our findings support the theory that the force of natural selection on gene expression in evolutionarily conserved signaling pathways that shape life-history traits declines after the onset of reproduction resulting in organismal senescence.

11.
J Evol Biol ; 34(9): 1386-1396, 2021 09.
Article in English | MEDLINE | ID: mdl-34233049

ABSTRACT

Human-induced environmental change can influence populations both at the global level through climatic warming and at the local level through habitat fragmentation. As populations become more isolated, they can suffer from high levels of inbreeding, which contributes to a reduction in fitness, termed inbreeding depression. However, it is still unclear if this increase in homozygosity also results in a corresponding increase in sensitivity to stressful conditions, which could intensify the already detrimental effects of environmental warming. Here, in a fully factorial design, we assessed the life-long impact of increased inbreeding load and elevated temperature on key life history traits in the seed beetle, Callosobruchus maculatus. We found that beetles raised at higher temperatures had far reduced fitness and survival than beetles from control temperatures. Importantly, these negative effects were exacerbated in inbred beetles as a result of increased inbreeding load, with further detrimental effects manifesting on individual eclosion probability and lifetime reproductive success. These results reveal the harmful impact that increasing temperature and likelihood of habitat fragmentation due to anthropogenetic changes in environmental conditions could have on populations of organisms worldwide.


Subject(s)
Coleoptera , Inbreeding Depression , Animals , Coleoptera/genetics , Genetic Fitness , Humans , Inbreeding , Reproduction , Temperature
12.
Proc Biol Sci ; 288(1950): 20210701, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33975472

ABSTRACT

Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P0), it has a wide range of both positive and negative effects on their descendants (F1-F3). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caloric Restriction , Humans , Longevity , Reproduction
13.
Proc Biol Sci ; 288(1944): 20201728, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33529563

ABSTRACT

Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The 'disposable soma' theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five 'longevity' genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.


Subject(s)
Aging , Longevity , Aging/genetics , Animals , Caenorhabditis elegans/genetics , Gene Expression , Longevity/genetics , Reproduction
14.
Trends Ecol Evol ; 35(10): 927-937, 2020 10.
Article in English | MEDLINE | ID: mdl-32741650

ABSTRACT

The extent to which the age of parents at reproduction can affect offspring lifespan and other fitness-related traits is important in our understanding of the selective forces shaping life history evolution. In this article, the widely reported negative effects of parental age on offspring lifespan (the 'Lansing effect') is examined. Outlined herein are the potential routes whereby a Lansing effect can occur, whether effects might accumulate across multiple generations, and how the Lansing effect should be viewed as part of a broader framework, considering how parental age affects offspring fitness. The robustness of the evidence for a Lansing effect produced so far, potential confounding variables, and how the underlying mechanisms might best be unravelled through carefully designed experimental studies are discussed.


Subject(s)
Longevity , Reproduction
15.
Evol Lett ; 4(4): 371-381, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32774885

ABSTRACT

Theory maintains that when future environment is predictable, parents should adjust the phenotype of their offspring to match the anticipated environment. The plausibility of positive anticipatory parental effects is hotly debated and the experimental evidence for the evolution of such effects is currently lacking. We experimentally investigated the evolution of anticipatory maternal effects in a range of environments that differ drastically in how predictable they are. Populations of the nematode Caenorhabditis remanei, adapted to 20°C, were exposed to a novel temperature (25°C) for 30 generations with either positive or zero correlation between parent and offspring environment. We found that populations evolving in novel environments that were predictable across generations evolved a positive anticipatory maternal effect, because they required maternal exposure to 25°C to achieve maximum reproduction in that temperature. In contrast, populations evolving under zero environmental correlation had lost this anticipatory maternal effect. Similar but weaker patterns were found if instead rate-sensitive population growth was used as a fitness measure. These findings demonstrate that anticipatory parental effects evolve in response to environmental change so that ill-fitting parental effects can be rapidly lost. Evolution of positive anticipatory parental effects can aid population viability in rapidly changing but predictable environments.

16.
Evolution ; 74(12): 2617-2628, 2020 12.
Article in English | MEDLINE | ID: mdl-32840865

ABSTRACT

The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The "cognitive buffer" hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the "cognitive buffer" hypothesis.


Subject(s)
Biological Evolution , Birds/growth & development , Brain/anatomy & histology , Longevity , Animals , Birds/anatomy & histology , Organ Size
17.
Ecol Lett ; 23(6): 994-1002, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239642

ABSTRACT

Early-life conditions can have long-lasting effects and organisms that experience a poor start in life are often expected to age at a faster rate. Alternatively, individuals raised in high-quality environments can overinvest in early-reproduction resulting in rapid ageing. Here we use a long-term experimental manipulation of early-life conditions in a natural population of collared flycatchers (Ficedula albicollis), to show that females raised in a low-competition environment (artificially reduced broods) have higher early-life reproduction but lower late-life reproduction than females raised in high-competition environment (artificially increased broods). Reproductive success of high-competition females peaked in late-life, when low-competition females were already in steep reproductive decline and suffered from a higher mortality rate. Our results demonstrate that 'silver-spoon' natal conditions increase female early-life performance at the cost of faster reproductive ageing and increased late-life mortality. These findings demonstrate experimentally that natal environment shapes individual variation in reproductive and actuarial ageing in nature.


Subject(s)
Passeriformes , Songbirds , Aging , Animals , Female , Reproduction , Silver
18.
J Gerontol A Biol Sci Med Sci ; 75(5): 843-848, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31761926

ABSTRACT

Dietary restriction (DR) is a well-established intervention to extend lifespan across taxa. Recent studies suggest that DR-driven lifespan extension can be cost-free, calling into question a central tenant of the evolutionary theory of aging. Nevertheless, boosting parental longevity can reduce offspring fitness. Such intergenerational trade-offs are often ignored but can account for the "missing costs" of longevity. Here, we use the nematode Caenorhabditis remanei to test for effects of DR by fasting on fitness of females and their offspring. Females deprived of food for 6 days indeed had increased fecundity, survival, and stress resistance after re-exposure to food compared with their counterparts with constant food access. However, offspring of DR mothers had reduced early and lifetime fecundity, slower growth rate, and smaller body size at sexual maturity. These findings support the direct trade-off between investment in soma and gametes challenging the hypothesis that increased somatic maintenance and impaired reproduction can be decoupled.


Subject(s)
Aging/physiology , Caenorhabditis/physiology , Caloric Restriction , Animals , Body Size , Fasting , Female , Fertility , Longevity , Male , Reproduction
19.
J Evol Biol ; 33(2): 217-224, 2020 02.
Article in English | MEDLINE | ID: mdl-31677316

ABSTRACT

Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.


Subject(s)
Caenorhabditis/physiology , Models, Biological , Animal Distribution/physiology , Animals , Behavior, Animal/physiology , Caenorhabditis/classification , Female
20.
PLoS Biol ; 17(11): e3000556, 2019 11.
Article in English | MEDLINE | ID: mdl-31765371

ABSTRACT

Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity.


Subject(s)
Diptera/physiology , Longevity , Maternal Age , Sexual Behavior, Animal , Animals , Breeding , Female , Male , Paternal Age , Reproduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...