Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(12): e0011845, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100538

ABSTRACT

Cyclosporiasis is a ubiquitous infection caused by an obligate intracellular protozoan parasite known as Cyclospora cayetanensis (C. cayetanensis). The disease is characterized by severe diarrhea which may be regrettably fatal in immunosuppressed patients. The commercially available treatment options have either severe side effects or low efficiency. In the present study, the novel formula of nitazoxanide (NTZ)-loaded nanostructured lipid carriers (NLCs) was assessed for the first time for C. cayetanensis treatment in both immunocompetent and immunosuppressed mice in comparison to commercially available drugs (trimethoprim-sulfamethoxazole (TMP-SMX) and NTZ). Swiss Albino mice were orally infected by 104 sporulated oocysts. The experimental groups were treated with the gold standard TMP-SMX, NTZ, blank NLCs and NTZ-loaded NLCs. The results demonstrated that NTZ-loaded NLCs represented the highest significant parasite percent reduction of (>98% reduction) in both immunocompetent and immunosuppressed mice designating successful tissue penetration and avoiding recurrence of infection at the end of the study. Oocysts treated with NTZ-loaded NLCs demonstrated the most mutilated rapturing morphology via scanning electron microscope examination as well as representing the most profound improvement of the histopathological picture. In conclusion, NTZ-loaded NLCs exhibited the uppermost efficacy in the treatment of cyclosporiasis. The safe nature and the anti-parasitic effect of the novel formulation encourage its use as a powerful treatment for human cyclosporiasis.


Subject(s)
Cyclospora , Cyclosporiasis , Humans , Animals , Mice , Cyclosporiasis/diagnosis , Cyclosporiasis/drug therapy , Cyclosporiasis/parasitology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Nitro Compounds/therapeutic use , Oocysts , Lipids
2.
Trop Med Infect Dis ; 8(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36828522

ABSTRACT

The tight relationship between immunity and retinoid levels provides evidence on the critical role of retinoic acid (RA) in regulating immune activity, especially the mucosal one. Mucosal immune response is the key for determination of the outcome of infection, particularly against intracellular mucosal pathogens such as Toxoplasma gondii, where it plays a crucial role as a sentinel against parasite invasion. Herein, the immunomodulatory adjuvant role of RA was evaluated for prophylactic vaccination against chronic Toxoplasma infection. A quantity of 15 µg of RA pre-encapsulated with lipid-based nanoparticles (SLNs) was intranasally used in three doses, two weeks apart, as an adjuvant to the Toxoplasma lysate antigen (TLA). Afterward, mice were infected with 20 cysts of T. gondii (ME49 strain) and were sacrificed at the 4th week post-infection. Parasitological, immunological, biochemical, and histopathological studies were applied as vaccine efficacy measures. The protective role of the tested vaccine was noted using the statistically marked reduction in brain cyst count, accompanied by remarkable levels of protective IFN-γ and antibodies, with amelioration of infection-induced oxidative stress and brain pathology. Ultimately, this experiment outlined the prospective role of a novel, natural, nano-encapsulated and mucosal vaccine adjuvant RA-SLNs as a propitious candidate against chronic toxoplasmosis.

3.
Trop Med Infect Dis ; 7(12)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36548656

ABSTRACT

Melatonin (MLT) is now emerging as one of the universally accepted immunostimulators with broad applications in medicine. It is a biological manipulator of the immune system, including mucosal ones. MLT was encapsulated in solid lipid nanoparticles (SLNs), then 100 mg/kg/dose of MLT-SLNs was used as an adjuvant of Toxoplasma lysate antigen (TLA). Experimental mice were intra-nasally inoculated with three doses of different regimens every two weeks, then challenged with 20 cysts of T. gondii Me49 strain, where they were sacrificed four weeks post-infection. Protective vaccine efficacy was evident via the significant brain cyst count reduction of 58.6%, together with remarkably high levels of humoral systemic and mucosal anti-Toxoplasma antibodies (Ig G, Ig A), supported by a reduced tachyzoites invasion of Vero cells in vitro upon incubation with sera obtained from these vaccinated mice. A cellular immune response was evident through the induction of significant levels of interferon-gamma (IFN γ), associated with morphological deteriorations of cysts harvested from the brains of vaccinated mice. Furthermore, the amelioration of infection-induced oxidative stress (OS) and histopathological changes were evident in mice immunized with TLA/MLT-SLNs. In conclusion, the present study highlighted the promising role of intranasal MLT-SLNs as a novel mucosal adjuvant candidate against chronic toxoplasmosis.

4.
Pharmaceutics ; 14(11)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432718

ABSTRACT

The study aim was to develop an intravesical delivery system of quercetin for bladder cancer management in order to improve drug efficacy, attain a controlled release profile and extend the residence time inside the bladder. Either uncoated or chitosan coated quercetin-loaded solid lipid nanoparticles (SLNs) were prepared and evaluated in terms of colloidal, morphological and thermal characteristics. Drug encapsulation efficiency and its release behaviour were assessed. Furthermore, cytotoxicity of SLNs on T-24 cells was evaluated. Ex vivo studies were carried out using bovine bladder mucosa. Spherical SLNs (≈250 nm) ensured good entrapment efficiencies (EE > 97%) and sustained drug release up to 142 h. Cytotoxicity profile revealed concentration-dependent toxicity recording an IC50 in the range of 1.6−8.9 µg/mL quercetin. SLNs were further dispersed in in situ hydrogels comprising poloxamer 407 (20%) with mucoadhesive polymers. In situ gels exhibited acceptable gelation temperatures (around 25 °C) and long erosion time (24−27 h). SLNs loaded gels displayed remarkably enhanced retention on bladder tissues relative to SLNs dispersions. Coated SLNs exhibited better penetration abilities compared to uncoated ones, while coated SLNs dispersed in gel (G10C-St-QCT-SLNs-2) showed the highest penetration up to 350 µm. Hence, G10C-St-QCT-SLNs-2 could be considered as a platform for intravesical quercetin delivery.

5.
Acta Trop ; 229: 106342, 2022 May.
Article in English | MEDLINE | ID: mdl-35157841

ABSTRACT

Schistosomiasis, a neglected tropical parasitic disease, is associated with severe pathology, mortality and economic loss. The treatment and control of schistosomiasis depends mainly on a single dose of praziquantel (PZQ). Drug repurposing and nanomedicine attract great attention to improve anti-schistosomal therapy. Previously, we reported that celecoxib (CELE), the non-steroidal anti-inflammatory drug, showed potent anti-schistosomal efficacy in an oral dose of 20 mg/kg/day for five days against different developmental stages of Schistosoma mansoni (S. mansoni) infection in mice. The aim of the current study was to shorten the duration of CELE treatment to reach an effective single oral dose against different developmental stages of S. mansoni infection using solid lipid nanoparticles (SLNs) as nano-carriers. The latter enhance the solubility, bioavailability and drug delivery and hence can decrease the frequency of administration which is of great clinical value. CELE-loaded SLNs showed good colloidal properties, high entrapment efficiency and drug loading, sustained biphasic release pattern with excellent storage stability. The used regimen was efficient against different developmental stages of S. mansoni infection with the most pronounced effect against the juvenile stage where the worm load, the hepatic egg count and the intestinal egg count were reduced by 86.39%, 91.45% and 90.11%, respectively. Meanwhile, when targeting the invasive and the adult stages, it induced reduction in the worm load by 73.55% and 78.22%, the hepatic egg count by 69.99% and 75.39% and the intestinal egg count by 77.57% and 79.89%, respectively. Additionally, CELE-loaded SLNs caused extensive tegumental damage of adult worms and marked improvement in the liver pathology.


Subject(s)
Nanoparticles , Schistosomiasis mansoni , Animals , Celecoxib/therapeutic use , Liposomes , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology
6.
Acta Trop ; 218: 105891, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33773944

ABSTRACT

Due to the high prevalence of schistosomiasis and the wide use of praziquantel solely for mass drug administration to control the disease, there is a great concern about the potential emergence of reduced susceptibility strains. This, together with the concern that praziquantel is ineffective against juvenile worms highlight the importance of developing an alternative anti-schistosomal drug. Using nonsteroidal anti-inflammatory drugs against schistosome infection is considerable. The present study evaluated the effect of oral administration of five days celecoxib regimen (20 mg/kg/day) against different developmental stages of Schistosoma mansoni infection. This regimen induced significant reduction in worm burden, tissue egg count, individual female fecundity and the mean percentage of immature and mature eggs with increased mean percentage of dead eggs. More importantly, celecoxib was more potent than praziquantel in all these parasitological parameters (except in the worm burden when given against the adult stage where the difference was statistically non-significant). Scanning and transmission electron microscopy of the adult worms revealed severe tegumental damage, laceration of the muscular layers and oedema of the syncytial layer. There was disruption of the testicular, ovarian and vitelline glandular tissues with signs of apoptosis and abnormalities of the spermatozoa and the oocytes. Additionally, celecoxib induced reduction in the number and the size of the hepatic granulomata and also amelioration of the hepatic tissue pathology.


Subject(s)
Anthelmintics/therapeutic use , Celecoxib/therapeutic use , Praziquantel/therapeutic use , Schistosomiasis mansoni/drug therapy , Administration, Oral , Animals , Apoptosis/drug effects , Disease Models, Animal , Female , Granuloma/pathology , Life Cycle Stages/drug effects , Liver/pathology , Male , Mice , Microscopy, Electron, Transmission , Parasite Load , Pilot Projects , Schistosoma mansoni/drug effects
7.
Drug Deliv Transl Res ; 11(3): 1037-1055, 2021 06.
Article in English | MEDLINE | ID: mdl-32617866

ABSTRACT

Despite the potent clinical efficacy of linezolid (LNZ) against drug-resistant tuberculosis, its safety and tolerability remain of major concern. Our objective is to develop antitubercular inhalable LNZ nano-embedded microparticles. In this context, LNZ incorporated in non-structured lipid carriers (NLCs) was characterized in terms of colloidal, morphological, thermal, and release profiles. The potential of LNZ-NLCs to cross mucosal barriers and invade alveolar macrophages (AM, MH-S cells) was appraised. In vivo proof of concept was accomplished via orotracheal administration to mice. Respirable microparticles prepared by spray drying NLCs with diluents were assessed for their size, shape, flowability, aerosolization performance, and lung deposition pattern. NLCs (809-827 nm in size, zeta potential - 37.4 to - 58.9 mV) ensued 19% LNZ loading and pH-independent sustained release. Penetration studies revealed 73% LNZ crossing mucus within 1 h. Meanwhile, viability assay on A549 cells ensured an IC50 of 1.2 and 0.32 mg/mL for plain and LNZ-NLCs, respectively. CLSM confirmed phagocytosis of NLCs by MH-S macrophages, while H&E staining demonstrated NLC accumulation in murine AM in vivo with no signs of histopathological/biochemical changes. Bronchoalveolar lavage showed significantly low levels of LDH and total proteins (TP) for LNZ-NLCs highlighting their superior safety. Respirable microparticles embedding LNZ-NLCs ensured excellent aerosolization (MMAD 2 µm, FPF 93%) denoting perfect alveolar deposition. The developed inhalation therapy provided sustained LNZ release, mucus penetrability, potential safety in therapeutic doses, in vitro and in vivo macrophage targetability, and preferential deposition in the deep lung. Overall positive outcomes rely on reduced dose, dosing frequency, and per se superior safety circumventing systemic-associated life-threatening side effects. Graphical abstract.


Subject(s)
Nanoparticles , Nanostructures , Tuberculosis , Animals , Drug Carriers/chemistry , Macrophages/metabolism , Mice , Nanoparticles/chemistry , Nanostructures/chemistry , Particle Size , Respiratory Therapy , Tuberculosis/drug therapy
8.
Eur J Pharm Sci ; 125: 151-162, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30292750

ABSTRACT

With the non-selective vasodilating action, short half-life and first-pass metabolism of sildenafil (SC), local application in the lung for pulmonary arterial hypertension is of high demand. Although several nanosystems have been lately investigated, nanostructured lipid carriers (NLCs) give promises of potential safety, biodegradability and controlled drug release. In the current study, NLCs comprising either precirol, stearic acid or beeswax as solid lipid in presence of oleic acid as liquid lipid and PVA or poloxamer as emulsifier were prepared. Optimized NLCs (200-268 nm in size) were appraised versus SLNs both in vitro and in vivo. Precirol/PVA-based SLNs and NLCs ensued high entrapment efficiencies (EE > 95%) and controlled release behaviour over 6 h even though NLCs showed higher release profile. Stability studies at 4 °C indicated potential colloidal and entrapment stability over 3 months. Interestingly, NLCs demonstrated efficient nebulization, low interaction with mucin and higher viability of A549 cells (3-fold increase in IC50 relative to SLNs) providing good aptitudes for pulmonary application. In vivo administration of free SC in rats revealed localized intra-alveolar bleeding, presumably related to excessive vasodilatation. Meanwhile, the nanoencapsulated drug confirmed normal lung parenchyma with minimal incidence of bleeding. Inspiring results highlight the potential of sildenafil-laden nanostructured lipid carriers as pulmonary drug delivery system.


Subject(s)
Drug Carriers/administration & dosage , Hypertension, Pulmonary/drug therapy , Lipids/administration & dosage , Nanostructures/administration & dosage , Phosphodiesterase 5 Inhibitors/administration & dosage , Sildenafil Citrate/administration & dosage , A549 Cells , Administration, Inhalation , Animals , Cell Survival/drug effects , Delayed-Action Preparations/administration & dosage , Diglycerides/administration & dosage , Humans , Male , Polyvinyl Alcohol/administration & dosage , Rats, Sprague-Dawley
9.
Int J Pharm ; 517(1-2): 312-321, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27979766

ABSTRACT

Phosphodiesterase type 5 (PDE-5) inhibitors - among which sildenafil citrate (SC) - play a primary role in the treatment of pulmonary hypertension (PH). Yet, SC can be only administered orally or parenterally with lot of risks. Targeted delivery of SC to the lungs via inhalation/nebulization is mandatory. In this study, solid lipid nanoparticles (SLNs) loaded with SC were prepared and characterized in terms of colloidal, morphological and thermal properties. The amount of drug loaded and its release behavior were estimated as a function of formulation variables. The potential of lipid nanocarriers to retain their properties following nebulization and autoclaving was investigated. In addition, toxicity aspects of plain and loaded SLNs on A549 cells were studied with respect to concentration. Spherical SLNs in the size range (100-250nm) were obtained. Particles ensured high encapsulation efficiency (88-100%) and sustained release of the payload over 24h. Cell-based viability experiments revealed a concentration-dependant toxicity for both plain and loaded SLNs recording an IC50 of 516 and 384µg/mL, respectively. Nebulization with jet nebulizer and sterilization via autoclaving affected neither the colloidal stability of SLNs nor the drug entrapment, proving their potential as pulmonary delivery system. Interaction of SLNs with mucin was a function of the emulsifier coating layer. Results yet seeking clinical evidence - might give promises of new therapy for PH of higher safety, better performance and higher patient compliance.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Phosphodiesterase 5 Inhibitors/pharmacokinetics , Administration, Inhalation , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Liberation , Drug Stability , Hypertension, Pulmonary/drug therapy , Lipids/toxicity , Mucins/chemistry , Nanoparticles/toxicity , Nebulizers and Vaporizers , Particle Size , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/chemistry , Phosphodiesterase 5 Inhibitors/toxicity , Sildenafil Citrate/administration & dosage , Sildenafil Citrate/chemistry , Sildenafil Citrate/pharmacokinetics , Sildenafil Citrate/toxicity , Solubility , Sterilization
SELECTION OF CITATIONS
SEARCH DETAIL
...