Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 363: 121360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850902

ABSTRACT

Large-volume production of poly(ethylene terephthalate) (PET), especially in the form of bottles and food packaging containers, causes problems with polymer waste management. Waste PET could be recycled thermally, mechanically or chemically and the last method allows to obtain individual monomers, but most often it is carried out in the presence of homogeneous catalysts, that are difficult to separate and reuse. In view of this, this work reports for the first time, application of bimetallic MOF-74 - as heterogeneous catalyst - for depolymerization of PET with high monomer (bishydroxyethyl terephthalate, BHET) recovery. The effect of type and amount of second metal in the MOF-74 (Mg/M) was systematically investigated. The results showed increased activity of MOF-74 (Mg/M) containing Co2+, Zn2+ and Mn2+ as a second metal, while the opposite correlation was observed for Cu2+ and Ni2+. It was found that the highest catalytic activity was demonstrated by the introduction of Mg-Mn into MOF-74 with ratio molar 1:1, which resulted in complete depolymerization of PET and 91.8% BHET yield within 4 h. Furthermore, the obtained catalyst showed good stability in 5 reaction cycles and allowed to achieve high-purity BHET, which was confirmed by HPLC analysis. The as-prepared MOF-74 (Mg/Mn) was easy to separate from the post-reaction mixture, clean and reuse in the next depolymerization reaction.


Subject(s)
Polyethylene Terephthalates , Catalysis , Polyethylene Terephthalates/chemistry , Polymerization , Waste Management/methods , Recycling , Metal-Organic Frameworks/chemistry
2.
Materials (Basel) ; 16(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512281

ABSTRACT

Hybrid materials based on graphitic carbon nitride (g-C3N4) and NTU-9 metal-organic frameworks (MOF) were designed and prepared via solvothermal synthesis and calcination in air. The as-prepared photocatalysts were subsequently characterized using Brunauer-Emmett-Teller (BET) analysis, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) emission spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The obtained NTU-9/C3N4 composites showed a greatly improved photocatalytic performance for the degradation of toluene in the gas phase under LED visible-light irradiation (λmax = 415 nm). The physicochemical properties and photocatalytic activities of the obtained NTU-9/C3N4 materials were tuned by varying the NTU-9 content (5-15 wt%) and preparation method of the composite materials. For composites prepared by calcination, the photocatalytic activity increased with decreasing NTU-9 content as a result of the formation of TiO2 from the MOFs. The best photocatalytic performance (65% of toluene was photodegraded after 60 min) was achieved by the NTU-9/C3N4 sample prepared via the solvothermal method and containing 15 wt% MOF, which can be attributed to the appropriate amount and stable combination of composite components, efficient charge separation, and enhanced visible-light absorption ability. The photocatalytic mechanisms of the prepared hybrid materials depending on the preparation method are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...