Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 91(2): 393-400, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25636762

ABSTRACT

PURPOSE: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Drug Implants/administration & dosage , Nanocapsules/chemistry , Neoplasms, Experimental/therapy , Silicon Dioxide/chemistry , Taxoids/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chemoradiotherapy/instrumentation , Chemoradiotherapy/methods , Docetaxel , Drug Implants/chemistry , Mice , Nanocapsules/ultrastructure , Neoplasms, Experimental/chemistry , Neoplasms, Experimental/pathology , Treatment Outcome
2.
Clin Chem ; 61(1): 267-77, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25297854

ABSTRACT

BACKGROUND: Multiplexed detection of low-level mutations presents a technical challenge for many technologies, including cancer gene panels used for targeted-resequencing. Analysis of mutations below approximately 2%-5% abundance in tumors with heterogeneity, samples with stromal contamination, or biofluids is problematic owing to increased noise from sequencing errors. Technologies that reduce noise via deep sequencing unavoidably reduce throughput and increase cost. Here we provide proof of principle that coamplification at lower denaturation temperature (COLD)-PCR technology enables multiplex low-level mutation detection in cancer gene panels while retaining throughput. METHODS: We have developed a multiplex temperature-tolerant COLD-PCR (fast-TT-COLD-PCR) approach that uses cancer gene panels developed for massively parallel sequencing. After multiplex preamplification from genomic DNA, we attach tails to all amplicons and perform fast-TT-COLD-PCR. This approach gradually increases denaturation temperatures in a step-wise fashion, such that all possible denaturation temperatures are encompassed. By introducing modified nucleotides, fast-COLD-PCR is adapted to enrich for melting temperature (Tm)-increasing mutations over all amplicons, in a single tube. Therefore, in separate reactions, both Tm-decreasing and Tm-increasing mutations are enriched. RESULTS: Using custom-made and commercial gene panels containing 8, 50, 190, or 16 000 amplicons, we demonstrate that fast-TT-COLD-PCR enriches mutations on all examined targets simultaneously. Incorporation of deoxyinosine triphosphate (dITP)/2,6-diaminopurine triphosphate (dDTP) in place of deoxyguanosine triphosphate (dGTP)/deoxyadenosine triphosphate (dATP) enables enrichment of Tm-increasing mutations. Serial dilution experiments demonstrate a limit of detection of approximately 0.01%-0.1% mutation abundance by use of Ion-Torrent and 0.1%-0.3% by use of Sanger sequencing. CONCLUSIONS: Fast-TT-COLD-PCR improves the limit of detection of cancer gene panels by enabling mutation enrichment in multiplex, single-tube reactions. This novel adaptation of COLD-PCR converts subclonal mutations to clonal, thereby facilitating detection and subsequent mutation sequencing.


Subject(s)
DNA/genetics , Genes, Neoplasm , High-Throughput Nucleotide Sequencing/methods , Multiplex Polymerase Chain Reaction/methods , Mutation , Neoplasms/genetics , Cell Line , DNA/blood , Humans , Limit of Detection , Neoplasms/blood , Reproducibility of Results
3.
Drug Deliv Transl Res ; 3(4): 299-308, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23914343

ABSTRACT

The advent of nanotechnology has bolstered a variety of nanoparticles based platforms for different biomedical applications. A better understanding for engineering novel nanoparticles for applications in cancer staging and therapy requires careful assessment of the nanoparticle's physico-chemical properties. Herein we report a facile synthesis method for PEGylated PLGA nanoparticles encapsulating anti-cancer drug doxorubicin for cancer imaging and therapy. The simple nanoprecipitation method reported here resulted in very robust PEGylated PLGA nanoparticles with close to 95% drug encapsulation efficiency. The nanoparticles showed a size of ~110 nm as characterized by TEM and DLS. The nanoparticles were further characterized by optical UV-Visible and fluorescence spectroscopy. The encapsulated doxorubicin showed a sustained release (>80%) from the nanoparticles matrix over a period of 8 days. The drug delivery efficiency of the nanoparticles was confirmed in vitro confocal imaging with PC3 and HeLa cell lines. In vitro quantitative estimation of drug accumulation in PC3 cell line showed a 22 times higher concentration of drug in case of nanoparticles based formulation in comparison to free drug and this was further reflected in the in vitro cytotoxicity assays. Overall the synthesis method reported here provides a simple and robust PLGA based platform for efficient drug delivery and imaging of cancer cells in vitro and in vivo.

4.
Phys Med Biol ; 58(3): 451-64, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23302438

ABSTRACT

This study determines the optimal clinical scenarios for gold nanoparticle dose enhancement as a function of irradiation conditions and potential biological targets using megavoltage x-ray beams. Four hundred and eighty clinical beams were studied for different potential cellular or sub-cellular targets. Beam quality was determined based on a 6 MV linac with and without a flattening filter for various delivery conditions. Dose enhancement ratios DER = D(GNP)/D(water) were calculated for all cases using the GEANT4 Monte Carlo code and the CEPXS/ONEDANT radiation transport deterministic code. Dose enhancement using GEANT4 agreed with CEPXS/ONEDANT. DER for unflattened beams is ∼2 times larger than for flattened beams. The maximum DER values were calculated for split-IMRT fields (∼6) and for out-of-field areas of an unflattened linac (∼17). In-field DER values, at the surface of gold nanoparticles, ranged from 2.2 to 4.2 (flattened beam) and from 3 to 4.7 (unflattened beams). For a GNP cluster with thicknesses of 10 and 100 nm, the DER ranges from 14% to 287%. DER is the greatest for split-IMRT, larger depths, out-of-field areas and/or unflattened linac. Mapping of a GNP location in tumor and normal tissue is essential for efficient and safe delivery of nanoparticle-enhanced radiotherapy.


Subject(s)
Gold/chemistry , Metal Nanoparticles/therapeutic use , Radiation Dosage , Radiotherapy, High-Energy/methods , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
SELECTION OF CITATIONS
SEARCH DETAIL
...