Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Med Chem ; 67(8): 6519-6536, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592023

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Thiophenes , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Virus Replication/drug effects , Humans , SARS-CoV-2/drug effects , Animals , Drug Discovery , Mice , Crystallography, X-Ray , COVID-19 Drug Treatment , Structure-Activity Relationship , Murine hepatitis virus/drug effects
2.
Protein Sci ; 33(4): e4945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511494

ABSTRACT

Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognize ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerization, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, and assemble into a high molecular weight oligomeric complex, the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerization of DTX3L is important for the DTX3L-PARP9 complex to read mono-ADP-ribosylation on a ligand-regulated transcription factor.


Subject(s)
Reading , Receptors, Androgen , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Adenosine Diphosphate Ribose/metabolism
3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076829

ABSTRACT

Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognise ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerisation, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, they assemble into a high molecular weight oligomeric complex, but the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerisation of DTX3L is important for mono-ADP-ribosylation reading by the DTX3L-PARP9 complex and to a ligand-regulated transcription factor.

4.
J Med Chem ; 66(2): 1301-1320, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36598465

ABSTRACT

We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Tankyrases , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Niacinamide/pharmacology , Drug Development , Benzothiazoles/pharmacology , Poly(ADP-ribose) Polymerases , Proto-Oncogene Proteins/metabolism
5.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234730

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 µM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.

6.
Eur J Med Chem ; 237: 114362, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35500474

ABSTRACT

While human poly-ADP-ribose chain generating poly-ARTs, PARP1 and 2 and TNKS1 and 2, have been widely characterized, less is known on the pathophysiological roles of the mono-ADP-ribosylating mono-ARTs, partly due to the lack of selective inhibitors. In this context, we have focused on the development of inhibitors for the mono-ART PARP10, whose overexpression is known to induce cell death. Starting from OUL35 (1) and its 4-(benzyloxy)benzamidic derivative (2) we herein report the design and synthesis of new analogues from which the cyclobutyl derivative 3c rescued cells most efficiently from PARP10 induced apoptosis. Most importantly, we also identified 2,3-dihydrophthalazine-1,4-dione as a new suitable nicotinamide mimicking PARP10 inhibitor scaffold. When it was functionalized with cycloalkyl (8a-c), o-fluorophenyl (8h), and thiophene (8l) rings, IC50 values in the 130-160 nM range were obtained, making them the most potent PARP10 inhibitors reported to date. These compounds also inhibited PARP15 with low micromolar IC50s, but none of the other tested poly- and mono-ARTs, thus emerging as dual mono-ART inhibitors. Compounds 8a, 8h and 8l were also able to enter cells and rescue cells from apoptosis. Our work sheds more light on inhibitor development against mono-ARTs and identifies chemical probes to study the cellular roles of PARP10 and PARP15.


Subject(s)
ADP Ribose Transferases , Poly(ADP-ribose) Polymerases , Apoptosis , Cell Death , Humans , Luminol/analogs & derivatives , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins
7.
J Med Chem ; 65(11): 7532-7560, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35608571

ABSTRACT

Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical "H-Y-Φ" motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors.


Subject(s)
Chemistry, Pharmaceutical , Proteins , Humans
8.
STAR Protoc ; 3(1): 101147, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35141567

ABSTRACT

Here, we describe a protocol to set up a screening assay for ADP-ribosyl binding proteins including proteins that possess O-glycosidase or N-glycosidase activities. The FRET-based assay measures the interaction of any ADP-ribosyl binding protein fused to CFP with a cysteine-ADP-ribosylated GAP-tag fused to YFP. Recombinant PtxS1 and PARP2 are used to mono-ADP-ribosylate and poly-ADP-ribosylate the GAP-tag. The protocol does not require specialized compounds or substrates, making it accessible and easy to adapt in any laboratory or for other proteins of interest. For complete details on the use and execution of this profile, please refer to Sowa et al. (2021).


Subject(s)
Biological Assay , Proteins , Adenosine Diphosphate , Glycoside Hydrolases
9.
Cell Rep Methods ; 1(8): 100121, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34786571

ABSTRACT

Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.


Subject(s)
COVID-19 , Carrier Proteins , Humans , Carrier Proteins/metabolism , SARS-CoV-2/genetics , Proteins/metabolism , ADP-Ribosylation
10.
Bioorg Med Chem ; 52: 116511, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34801828

ABSTRACT

The scaffold of TIQ-A, a previously known inhibitor of human poly-ADP-ribosyltransferase PARP1, was utilized to develop inhibitors against human mono-ADP-ribosyltransferases through structure-guided design and activity profiling. By supplementing the TIQ-A scaffold with small structural changes, based on a PARP10 inhibitor OUL35, selectivity changed from poly-ADP-ribosyltransferases towards mono-ADP-ribosyltransferases. Binding modes of analogs were experimentally verified by determining complex crystal structures with mono-ADP-ribosyltransferase PARP15 and with poly-ADP-ribosyltransferase TNKS2. The best analogs of the study achieved 10-20-fold selectivity towards mono-ADP-ribosyltransferases PARP10 and PARP15 while maintaining micromolar potencies. The work demonstrates a route to differentiate compound selectivity between mono- and poly-ribosyltransferases of the human ARTD family.


Subject(s)
ADP Ribose Transferases/antagonists & inhibitors , Isoquinolines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Thiophenes/pharmacology , ADP Ribose Transferases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
11.
Antimicrob Agents Chemother ; 65(12): e0139821, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34606339

ABSTRACT

Alphaviruses are positive-strand RNA viruses causing febrile disease. Macrodomain-containing proteins, involved in ADP-ribose-mediated signaling, are encoded by both host cells and several virus groups, including alphaviruses. In this study, compound MRS 2578 that targets the human ADP-ribose glycohydrolase MacroD1 inhibited Semliki Forest virus production as well as viral RNA replication and replicase protein expression. The inhibitor was similarly active in alphavirus trans-replication systems, indicating that it targets the viral RNA replication stage.


Subject(s)
Alphavirus , Alphavirus/genetics , Humans , Isothiocyanates , RNA, Viral/genetics , Thiourea/analogs & derivatives , Viral Nonstructural Proteins , Virus Replication
12.
Nat Commun ; 12(1): 3479, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108479

ABSTRACT

Human PARP2/ARTD2 is an ADP-ribosyltransferase which, when activated by 5'-phosphorylated DNA ends, catalyses poly-ADP-ribosylation of itself, other proteins and DNA. In this study, a crystal structure of PARP2 in complex with an activating 5'-phosphorylated DNA shows that the WGR domain bridges the dsDNA gap and joins the DNA ends. This DNA binding results in major conformational changes, including reorganization of helical fragments, in the PARP2 regulatory domain. A comparison of PARP1 and PARP2 crystal structures reveals how binding to a DNA damage site leads to formation of a catalytically competent conformation. In this conformation, PARP2 is capable of binding substrate NAD+ and histone PARylation factor 1 that changes PARP2 residue specificity from glutamate to serine when initiating DNA repair processes. The structure also reveals how the conformational changes in the autoinhibitory regulatory domain would promote the flexibility needed by the enzyme to reach the target macromolecule for ADP-ribosylation.


Subject(s)
DNA Damage , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Carrier Proteins/metabolism , DNA/chemistry , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Enzyme Activation , Humans , NAD/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Protein Binding , Protein Conformation , Protein Domains , Protein Unfolding
13.
ChemistryOpen ; 10(10): 939-948, 2021 10.
Article in English | MEDLINE | ID: mdl-34145784

ABSTRACT

Intracellular ADP-ribosyltransferases catalyze mono- and poly-ADP-ribosylation and affect a broad range of biological processes. The mono-ADP-ribosyltransferase PARP10 is involved in signaling and DNA repair. Previous studies identified OUL35 as a selective, cell permeable inhibitor of PARP10. We have further explored the chemical space of OUL35 by synthesizing and investigating structurally related analogs. Key synthetic steps were metal-catalyzed cross-couplings and functional group modifications. We identified 4-(4-cyanophenoxy)benzamide and 3-(4-carbamoylphenoxy)benzamide as PARP10 inhibitors with distinct selectivities. Both compounds were cell permeable and interfered with PARP10 toxicity. Moreover, both revealed some inhibition of PARP2 but not PARP1, unlike clinically used PARP inhibitors, which typically inhibit both enzymes. Using crystallography and molecular modeling the binding of the compounds to different ADP-ribosyltransferases was explored regarding selectivity. Together, these studies define additional compounds that interfere with PARP10 function and thus expand our repertoire of inhibitors to further optimize selectivity and potency.


Subject(s)
ADP Ribose Transferases , Poly(ADP-ribose) Polymerase Inhibitors , ADP Ribose Transferases/metabolism , Models, Molecular , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Signal Transduction
14.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 151-163, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33559605

ABSTRACT

The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.


Subject(s)
Crystallography, X-Ray/methods , Proteins/chemistry , Software , Databases, Protein , Internet
15.
SLAS Discov ; 26(1): 67-76, 2021 01.
Article in English | MEDLINE | ID: mdl-32527186

ABSTRACT

ADP-ribosylation is a post-translational modification involved in the regulation of many vital cellular processes. This posttranslational modification is carried out by ADP-ribosyltransferases converting ß-NAD+ into nicotinamide and a protein-linked ADP-ribosyl group or a chain of PAR. The reverse reaction, release of ADP-ribose from the acceptor molecule, is catalyzed by ADP-ribosylhydrolases. Several hydrolases contain a macrodomain fold, and activities of human macrodomain protein modules vary from reading or erasing mono- and poly-ADP-ribosylation. Macrodomains have been linked to diseases such as cancer, making them potential drug targets. Discovery of inhibitors requires robust biochemical tools mostly lacking for hydrolases, and here we describe an inhibitor screening assay against mono-ADP-ribosylhydrolyzing enzymes. The activity-based assay uses an α-NAD+, anomer of ß-NAD+, which is accepted as a substrate by MacroD1, MacroD2, and ARH3 due to its resemblance to the protein-linked ADP-ribose. The amount of α-NAD+ present after hydrolysis is measured by chemically converting it on a microtiter plate to a fluorescent compound. We optimized the assay for MacroD2 and performed a proof-of-concept compound screening. Three compounds were identified as screening hits with micromolar potency. However, further characterization of the compounds identified them as protein destabilizers, excluding further follow-up studies. Validation and screening demonstrated the usability of the in vitro assay for MacroD2, and we also demonstrate the applicability of the assay as a tool for other human ADP-ribosylhydrolases.


Subject(s)
Biological Assay/methods , Carboxylic Ester Hydrolases/metabolism , ADP-Ribosylation , Carboxylic Ester Hydrolases/chemistry , Enzyme Activation , Humans , NAD/metabolism , Protein Processing, Post-Translational
16.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 10): 477-482, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33006575

ABSTRACT

MacroD2 is one of the three human macrodomain proteins characterized by their protein-linked mono-ADP-ribosyl-hydrolyzing activity. MacroD2 is a single-domain protein that contains a deep ADP-ribose-binding groove. In this study, new crystallization conditions for MacroD2 were found and three crystal structures of human MacroD2 in the apo state were solved in space groups P41212, P43212 and P43, and refined at 1.75, 1.90 and 1.70 Šresolution, respectively. Structural comparison of the apo crystal structures with the previously reported crystal structure of MacroD2 in complex with ADP-ribose revealed conformational changes in the side chains of Val101, Ile189 and Phe224 induced by the binding of ADP-ribose in the active site. These conformational variations may potentially facilitate design efforts of a MacroD2 inhibitor.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Crystallography, X-Ray/methods , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Hydrolases/chemistry , Hydrolases/metabolism , Adenosine Diphosphate Ribose/chemistry , Catalytic Domain , Humans , Hydrolysis , Protein Binding , Protein Conformation , Protein Domains
17.
ACS Omega ; 5(22): 13447-13453, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548533

ABSTRACT

Thieno[2,3-c]isoquinolin-5(4H)-one is known for its potential as an anti-ischemic agent through the inhibition of poly(ADP-ribose) polymerase 1 (PARP1). However, the compound also inhibits many other enzymes of the PARP family, potentially limiting its usability. The broad inhibition profile, on the other hand, indicates that this molecule backbone could be potentially used as a scaffold for the development of specific inhibitors for certain PARP enzymes. These efforts call for novel synthetic strategies for substituted thieno[2,3-c]isoquinolin-5(4H)-one that could provide the needed selectivity. In this article, an efficient synthetic strategy for 8-alkoxythieno[2,3-c]isoquinolin-5(4H)-ones through eight steps is presented and other tested synthetic pathways are discussed in detail. Synthesis of 7-methoxythieno[2,3-c]isoquinolin-5(4H)-one is also demonstrated to show that the strategy can be applied widely in the syntheses of substituted alkoxythieno[2,3-c]isoquinolin-5(4H)-ones.

18.
PLoS One ; 15(2): e0223870, 2020.
Article in English | MEDLINE | ID: mdl-32092083

ABSTRACT

Lactate oxidases belong to a group of FMN-dependent enzymes and they catalyze a conversion of lactate to pyruvate with a release of hydrogen peroxide. Hydrogen peroxide is also utilized as a read out in biosensors to quantitate lactate levels in biological samples. Aerococcus viridans lactate oxidase is the best characterized lactate oxidase and our knowledge of lactate oxidases relies largely to studies conducted with that particular enzyme. Pediococcus acidilactici lactate oxidase is also commercially available for e.g. lactate measurements, but this enzyme has not been characterized in detail before. Here we report structural characterization of the recombinant enzyme and its co-factor dependent oligomerization. The crystal structures revealed two distinct conformations in the loop closing the active site, consistent with previous biochemical studies implicating the role of loop in catalysis. Despite the structural conservation of active site residues, we were not able to detect either oxidase or monooxygenase activity when L-lactate was used as a substrate. Pediococcus acidilactici lactate oxidase is therefore an example of a misannotation of an FMN-dependent enzyme, which catalyzes likely a so far unknown oxidation reaction.


Subject(s)
Flavin Mononucleotide/pharmacology , Mixed Function Oxygenases/metabolism , Pediococcus acidilactici/enzymology , Protein Multimerization/drug effects , Catalysis , Catalytic Domain , Crystallography, X-Ray , Lactic Acid/metabolism , Pediococcus acidilactici/metabolism , Recombinant Proteins
19.
Anal Biochem ; 587: 113463, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31574254

ABSTRACT

Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest for both biological studies, and towards drug development. Therefore, we decided to develop a screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find small molecule probes for further studies in cellular settings. To our knowledge, no potent small molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. We carried out screening of 2000 compounds and identified hits with moderate IC50-values. We also established an orthogonal in-cell Western blot assay to validate hits. This paves way for future development of specific high affinity compounds by further high throughput screening of larger compound libraries using the methods established here. The method could also be applied to screening other NRXN-ligand interactions.


Subject(s)
Calcium-Binding Proteins/antagonists & inhibitors , Nervous System Diseases/metabolism , Neural Cell Adhesion Molecules/antagonists & inhibitors , Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Drosophila , Leucine-Rich Repeat Proteins , Mice , Models, Molecular , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Proteins/chemistry , Proteins/metabolism
20.
Biochem J ; 476(2): 307-332, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30573650

ABSTRACT

The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the ß-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.


Subject(s)
Acyl Coenzyme A/chemistry , Carrier Proteins/chemistry , Models, Molecular , Zebrafish Proteins/chemistry , Animals , Catalytic Domain , Humans , Substrate Specificity , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...