Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(46): 18955-18969, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37927081

ABSTRACT

The Zr-monosubstituted Keggin-type dimeric phosphotungstate (Bu4N)8[{PW11O39Zr(µ-OH)(H2O)}2] (1) efficiently catalyzes epoxidation of C═C bonds in various kinds of alkenes, including terminal ones, with aqueous H2O2 as oxidant. Less sterically hindered double bonds are preferably epoxidized despite their lower nucleophilicity. Basic additives (Bu4NOH) in the amount of 1 equiv per dimer 1 suppress H2O2 unproductive decomposition, increase substrate conversion, improve yield of heterolytic oxidation products and oxidant utilization efficiency, and also affect regioselectivity of epoxidation, enhancing oxygen transfer to sterically hindered electron-rich C═C bonds. Acid additives produce a reverse effect on the substrate conversion and H2O2 efficiency. The reaction mechanism was explored using a range of test substrates, kinetic, and spectroscopic tools. The opposite effects of acid and base additives on alkene epoxidation and H2O2 degradation have been rationalized in terms of their impact on hydrolysis of 1 to form monomeric species, [PW11O39Zr(OH)(H2O)x]4- (1-M, x = 1 or 2), which favors H2O2 homolytic decomposition. The interaction of 1 with H2O2 has been investigated by HR-ESI-MS, ATR-FT-IR, and 31P NMR spectroscopic techniques. The combination of spectroscopic studies and kinetic modeling implicated the existence of two types of dimeric peroxo complexes, [Zr2(µ-η2:η2-O2){PW11O39}2(H2O)x]]8- and [{Zr(µ-η2-O2)}2(PW11O39)2(H2O)y]10-, along with monomeric Zr (hydro)peroxo species that begin to dominate at a high excess of H2O2. Both dimeric µ-η2-peroxo intermediates are inert toward alkenes under stoichiometric conditions. V-shape Hammett plots obtained for epoxidation of p-substituted styrenes suggested a biphilic nature of the active oxidizing species, which are monomeric Zr-hydroperoxo and peroxo species. Small basic additives increase the electrophilicity of the catalyst and decrease its nucleophilicity. HR-ESI-MS has identified a dimeric, most likely, bridging hydroperoxo species [{PW11O39Zr}2(µ-O)(µ-OOH)]9-, which may account for the improved epoxidation selectivity and regioselectivity toward sterically hindered C═C bonds.

2.
ACS Catal ; 13(15): 10324-10339, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37560188

ABSTRACT

The decomposition of hydrogen peroxide (H2O2) is the main undesired side reaction in catalytic oxidation processes of industrial interest that make use of H2O2 as a terminal oxidant, such as the epoxidation of alkenes. However, the mechanism responsible for this reaction is still poorly understood, thus hindering the development of design rules to maximize the efficiency of catalytic oxidations in terms of product selectivity and oxidant utilization efficiency. Here, we thoroughly investigated the H2O2 decomposition mechanism using a Zr-monosubstituted dimeric Lindqvist tungstate, (Bu4N)6[{W5O18Zr(µ-OH)}2] ({ZrW5}2), which revealed high activity for this reaction in acetonitrile. The mechanism of the {ZrW5}2-catalyzed H2O2 degradation in the absence of an organic substrate was investigated using kinetic, spectroscopic, and computational tools. The reaction is first order in the Zr catalyst and shows saturation behavior with increasing H2O2 concentration. The apparent activation energy is 11.5 kcal·mol-1, which is significantly lower than the values previously found for Ti- and Nb-substituted Lindqvist tungstates (14.6 and 16.7 kcal·mol-1, respectively). EPR spectroscopic studies indicated the formation of superoxide radicals, while EPR with a specific singlet oxygen trap, 2,2,6,6-tetramethylpiperidone (4-oxo-TEMP), revealed the generation of 1O2. The interaction of test substrates, α-terpinene and tetramethylethylene, with H2O2 in the presence of {ZrW5}2 corroborated the formation of products typical of the oxidation processes that engage 1O2 (endoperoxide ascaridole and 2,3-dimethyl-3-butene-2-hydroperoxide, respectively). While radical scavengers tBuOH and p-benzoquinone produced no effect on the peroxide product yield, the addition of 4-oxo-TEMP significantly reduced it. After optimization of the reaction conditions, a 90% yield of ascaridole was attained. DFT calculations provided an atomistic description of the H2O2 decomposition mechanism by Zr-substituted Lindqvist tungstate catalysts. Calculations showed that the reaction proceeds through a Zr-trioxidane [Zr-η2-OO(OH)] key intermediate, whose formation is the rate-determining step. The Zr-substituted POM activates heterolytically a first H2O2 molecule to generate a Zr-peroxo species, which attacks nucleophilically to a second H2O2, causing its heterolytic O-O cleavage to yield the Zr-trioxidane complex. In agreement with spectroscopic and kinetic studies, the lowest-energy pathway involves dimeric Zr species and an inner-sphere mechanism. Still, we also found monomeric inner- and outer-sphere pathways that are close in energy and could coexist with the dimeric one. The highly reactive Zr-trioxidane intermediate can evolve heterolytically to release singlet oxygen and also decompose homolytically, producing superoxide as the predominant radical species. For H2O2 decomposition by Ti- and Nb-substituted POMs, we also propose the formation of the TM-trioxidane key intermediate, finding good agreement with the observed trends in apparent activation energies.

3.
Chemistry ; 27(23): 6985-6992, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33559238

ABSTRACT

The catalytic performance of Zr-abtc and MIP-200 metal-organic frameworks consisting of 8-connected Zr6 clusters and tetratopic linkers was investigated in H2 O2 -based selective oxidations and compared with that of 12-coordinated UiO-66 and UiO-67. Zr-abtc demonstrated advantages in both substrate conversion and product selectivity for epoxidation of electron-deficient C=C bonds in α,ß-unsaturated ketones. The significant predominance of 1,2-epoxide in carvone epoxidation, coupled with high sulfone selectivity in thioether oxidation, points to a nucleophilic oxidation mechanism over Zr-abtc. The superior catalytic performance in the epoxidation of unsaturated ketones correlates with a larger amount of weak basic sites in Zr-abtc. Electrophilic activation of H2 O2 can also be realized, as evidenced by the high activity of Zr-abtc in epoxidation of the electron-rich C=C bond in caryophyllene. XRD and FTIR studies confirmed the retention of the Zr-abtc structure after the catalysis. The low activity of MIP-200 in H2 O2 -based oxidations is most likely related to its specific hydrophilicity, which disfavors adsorption of organic substrates and H2 O2 .

4.
Chem Commun (Camb) ; 48(54): 6812-4, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22662325

ABSTRACT

Mesoporous metal-organic frameworks Cr- and Fe-MIL-101 are highly efficient, true heterogeneous and recyclable catalysts for solvent-free selective oxidation of cyclohexane with molecular oxygen and/or tert-butyl hydroperoxide under mild conditions.

5.
Inorg Chem ; 49(6): 2920-30, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20166742

ABSTRACT

Polyoxotungstates [PW(4)O(24)](3-) (PW(4)) and [PW(12)O(40)](3-) (PW(12)) have been inserted into nanocages of the metal organic framework MIL-101. The hybrid materials PW(x)/MIL-101 (x = 4 or 12) containing 5-14 wt % of polyoxotungstate have been obtained and characterized by elemental analysis, N(2) adsorption, FT-IR, Raman, and (31)P NMR MAS spectroscopic techniques. Their catalytic performance was assessed in the selective oxidation of alkenes with aqueous hydrogen peroxide under mild reaction conditions ([H(2)O(2)] = 0.1-0.2 M, 50 degrees C, MeCN). PW(x)/MIL-101 enclosing 5 wt % of polyoxotungstate demonstrated fairly good catalytic activities in the epoxidation of various alkenes (3-carene, limonene, alpha-pinene, cyclohexene, cyclooctene, 1-octene), the turnover frequencies (TOF) and alkene conversions were close to the corresponding parameters achieved with homogeneous PW(x). For the oxidation of substrates with aromatic groups (styrene, cis- and trans-stilbenes), a higher level of olefin conversion was attained using PW(12)/MIL-101. Moreover, confinement of PW(12) within MIL-101 nanocages allowed us to reach higher epoxide selectivities at higher alkene conversions. The hybrid PW(x)/MIL-101 materials were stable to leaching, behaved as true heterogeneous catalysts, were easily recovered by filtration, and reused several times with the maintenance of the catalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...