Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 7(18): 3560-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27564452

ABSTRACT

Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters.


Subject(s)
Coordination Complexes/chemistry , DNA/chemistry , Nanotubes/chemistry , Silver/chemistry , Models, Molecular
2.
J Am Chem Soc ; 137(36): 11656-65, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26312774

ABSTRACT

Direct DNA absorption of UVB photons in a spectral range of 290-320 nm of terrestrial solar radiation is responsible for formation of cyclobutane pyrimidine dimers causing skin cancer. Formation of UVB-induced lesions is not random, and conformational features of their hot spots remain poorly understood. We calculated the electronic excitation spectra of thymine, cytosine, and adenine stacked dimers with ab initio methods in a wide range of conformations derived from PDB database and molecular dynamics trajectory of thymine-containing oligomer. The stacked dimers with reduced interbase distances in curved, hairpin-like, and highly distorted DNA and RNA structures exhibit excitonic transitions red-shifted up to 0.6 eV compared to the B-form of stacked bases, which makes them the preferred target for terrestrial solar radiation. These results might have important implications for predicting the hot spots of UVB-induced lesions in nucleic acids.


Subject(s)
Nucleic Acids/chemistry , Ultraviolet Rays , Dimerization , Molecular Dynamics Simulation , Thymine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...