Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Glycoconj J ; 35(1): 105, 2018 02.
Article in English | MEDLINE | ID: mdl-29411221

ABSTRACT

The original version of this article unfortunately contained a mistake in the author group section. Author A. Bronowicka-Szydelko's surname was inadvertently interchanged to "Szydelko-Bronowicka".

2.
Glycoconj J ; 35(1): 95-103, 2018 02.
Article in English | MEDLINE | ID: mdl-29305778

ABSTRACT

The most abundant proteins in the arteries are those of extracellular matrix, ie. collagen and elastin. Due to their long half-lifes these proteins have an increased chance to undergo glycation. The aim of this study was to determine relationship between the content of the main extracellular matrix proteins and the advanced glycation end products (AGEs) in arteries. In this study 103 fragments of aorta were analyzed by ELISA and immunobloting for the content of collagens type I, III and IV and elastin and the content of advanced glycation end-products (AGE). A negative correlation between the content of collagens type III and IV and AGE (r = -0,258, p = 0,0122, and a weak negative correlation between collagen type III and age of the sample donor (r = 0,218, p = 0,0262) were demonstrated. This result comes as a surprise and it contradicts an intuitive assumption that with more glycation substrate, i.e. matrix proteins, more AGE products are expected. We have concluded that the results of the ELISA tests must have been influenced by the glycation. As a consequence, either modified protein molecules were not being recognized by the antibodies, or the glycation, and formation of crosslinks have blocked access of the antibodies to the antigen. It will conceal the effect of the linear dependence between the result (absorbance/densitometry) from the quantity of protein to which the antibody is directed.


Subject(s)
Artifacts , Glycation End Products, Advanced/immunology , Immunoenzyme Techniques/standards , Adult , Aged , Aorta/chemistry , Collagen/analysis , Collagen/immunology , Elastin/analysis , Elastin/immunology , Female , Humans , Male , Middle Aged
3.
J Theor Biol ; 329: 52-63, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23507339

ABSTRACT

It is well-known that the microenvironment of solid tumours is a significant component of the processes of tumour growth and invasion. Interactions between tumour cells and stromal components play a crucial role in tumour progression as well as suppression. We describe a mathematical model of tumour growth within a host tissue which takes into account both cell-extracellular matrix interactions and tissue compression effects. This multiphase model consisting of three coupled partial differential equations captures the dynamics of tumour progression, particularly of a desmoplastic tumour (i.e. a tumour rich in fibrous connective tissue). The model is analysed in terms of stability in a spatially homogenous case. Computer simulations agree with the biological picture of the disease and may help to understand the process leading to the pathology.


Subject(s)
Fibroma, Desmoplastic/pathology , Models, Biological , Computer Simulation , Disease Progression , Extracellular Matrix/pathology , Humans , Neoplasm Invasiveness , Tumor Microenvironment
4.
J Mech Behav Biomed Mater ; 18: 240-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23290820

ABSTRACT

Fourier Transform Raman Spectroscopy was used to investigate the molecular changes of structural proteins in human skin subjected to strain. In the Raman spectrum of unstrained skin, bands assigned mainly to collagen and elastin were observed at 1658 cm(-1) (amide I), 1271 and 1255 cm(-1) (amide III), and 935 and 817 cm(-1) (C-C stretching modes of the protein backbone). Moreover, bands characteristic for amino acids were observed at 1336 cm(-1) (desmosine), 1004 cm(-1) (phenylalanine), 919 and 856 cm(-1) (proline), and 877 cm(-1) (hydroxyproline). Positions and intensities of the listed Raman bands were analysed as a function of applied strain. A clear correlation between Raman wavenumbers and the level of mechanical stress was established. Wavenumbers of the analysed bands changed gradually with increasing strain. Distinct responses, depending on the sample cutting direction, i.e. longitudinal or perpendicular to the Langer's lines, were noticed. It was concluded that elastin and non-helical domains of collagen are initially involved in the load transfer and triple helices of collagen are gradually joining this process. It was proved that Raman spectroscopy give insight into skin deformation micromechanics.


Subject(s)
Fourier Analysis , Skin/chemistry , Skin/cytology , Spectrum Analysis, Raman , Stress, Mechanical , Biomechanical Phenomena , Humans , Male , Materials Testing , Middle Aged
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 1): 031109, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17500670

ABSTRACT

We show how the irreducible memory function can be obtained in a rather straightforward way, and that it can be expressed in terms of two contributions representing two parallel decay channels. This representation should be useful for treating systems with a slow time dependence and where eventually some internal degrees of freedom enters in the relaxation process, and cuts off an underlying ideal ergodic to nonergodic transition. We also show how the irreducible memory function under certain mild conditions defines a regenerative stochastic process, or a two level stochastic system. This leads to a picture with dynamical heterogeneities, where the statistical properties asymptotically are ruled by limit processes. This can explain the universal behavior observed in many glass-forming systems.

6.
Acta Biotheor ; 54(2): 61-101, 2006.
Article in English | MEDLINE | ID: mdl-16988902

ABSTRACT

Oncogenic hyperplasia is the first and inevitable stage of formation of a (solid) tumor. This stage is also the core of many other proliferative diseases. The present work proposes the first minimal model that combines homeorhesis with oncogenic hyperplasia where the latter is regarded as a genotoxically activated homeorhetic dysfunction. This dysfunction is specified as the transitions of the fluid of cells from a fluid, homeorhetic state to a solid, hyperplastic-tumor state, and back. The key part of the model is a nonlinear reaction-diffusion equation (RDE) where the biochemical-reaction rate is generalized to the one in the well-known Schlögl physical theory of the non-equilibrium phase transitions. A rigorous analysis of the stability and qualitative aspects of the model, where possible, are presented in detail. This is related to the spatially homogeneous case, i.e. when the above RDE is reduced to a nonlinear ordinary differential equation. The mentioned genotoxic activation is treated as a prevention of the quiescent G0-stage of the cell cycle implemented with the threshold mechanism that employs the critical concentration of the cellular fluid and the nonquiescent-cell-duplication time. The continuous tumor morphogeny is described by a time-space-dependent cellular-fluid concentration. There are no sharp boundaries (i.e. no concentration jumps exist) between the domains of the homeorhesis- and tumor-cell populations. No presumption on the shape of a tumor is used. To estimate a tumor in specific quantities, the model provides the time-dependent tumor locus, volume, and boundary that also points out the tumor shape and size. The above features are indispensable in the quantitative development of antiproliferative drugs or therapies and strategies to prevent oncogenic hyperplasia in cancer and other proliferative diseases. The work proposes an analytical-numerical method for solving the aforementioned RDE. A few topics for future research are suggested.


Subject(s)
Cell Count , Homeostasis , Neoplasms/pathology , Animals , Humans , Hyperplasia , Models, Biological , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...