Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Microorganisms ; 11(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37374935

ABSTRACT

BACKGROUND: Q fever is a zoonotic infectious disease characterized by fever, malaise, chills, significant weakness, and muscle pain. In some cases, the disease can become chronic and affect the inner membranes of the heart, such as the valves, leading to endocarditis and a high risk of death. Coxiella burnetii (C. burnetii) is the primary causative agent of Q fever in humans. This study aims to monitor the presence of C. burnetii in ticks collected from small mammals and cattle in the Republic of Guinea (RG). METHODS: Rodents were trapped in the Kindia region of RG during 2019-2020, and ticks were collected from cattle in six regions of RG. Total DNA was extracted using a commercial kit (RIBO-prep, InterLabService, Russia) following the manufacturer's instructions. Real-time PCR amplification was conducted using the kit (AmpliSens Coxiella burnetii-FL, InterLabService, Russia) to detect C. burnetii DNA. RESULTS AND CONCLUSIONS: Bacterial DNA was detected in 11 out of 750 (1.4%) small mammals and 695 out of 9620 (7.2%) tick samples. The high number of infected ticks (7.2%) suggests that they are the main transmitters of C. burnetii in RG. The DNA was detected in the liver and spleen of a Guinea multimammate mouse, Mastomys erythroleucus. These findings demonstrate that C. burnetii is zoonotic in RG, and measures should be taken to monitor the bacteria's dynamics and tick prevalence in the rodent population.

2.
Vaccines (Basel) ; 11(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37243102

ABSTRACT

The State Research Center of Virology and Biotechnology "VECTOR" of the Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor) has developed the peptide-based EpiVacCorona vaccine, which is the first synthetic peptide-based antiviral vaccine for mass immunization in international vaccinology. An early clinical trial (Phase I-II) demonstrated that the EpiVacCorona vaccine is a safe product. The "Multicenter double-blind, placebo-controlled, comparative, randomized trial to assess the tolerability, safety, immunogenicity and prophylactic efficacy of the EpiVacCorona COVID-19 vaccine based on peptide antigens in 3000 volunteers aged 18 years and older" was performed regarding vaccine safety. The key objectives of the study were to evaluate the safety and prophylactic efficacy of the two-dose EpiVacCorona vaccine administered via the intramuscular route. The results of the clinical study (Phase III) demonstrated the safety of the EpiVacCorona vaccine. Vaccine administration was accompanied by mild local reactions in ≤27% of cases and mild systemic reactions in ≤14% of cases. The prophylactic efficacy of the EpiVacCorona COVID-19 vaccine after the completion of the vaccination series was 82.5% (CI95 = 75.3-87.6%). The high safety and efficacy of the vaccine give grounds for recommending this vaccine for regular seasonal prevention of COVID-19 as a safe and effective medicinal product.

3.
Microorganisms ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677472

ABSTRACT

In this study, we investigated the features of the infectious process by simulating co-infection with SARS-CoV-2 and human adenovirus type 5 (HAdV-5) or influenza A virus (IAV) in vitro and in vivo. The determination of infectious activity of viruses and digital PCR demonstrated that during simultaneous and sequential HAdV-5 followed by SARS-CoV-2 infection in vitro and in vivo, the HAdV-5 infection does not interfere with replication of SARS-CoV-2. The hamsters co-infected and mono-infected with SARS-CoV-2 exhibited nearly identical viral titers and viral loads of SARS-CoV-2 in the lungs. The hamsters and ferrets co-infected by SARS-CoV-2- and IAV demonstrated more pronounced clinical manifestations than mono-infected animals. Additionally, the lung histological data illustrate that HAdV-5 or IAV and SARS-CoV-2 co-infection induces more severe pathological changes in the lungs than mono-infection. The expression of several genes specific to interferon and cytokine signaling pathways in the lungs of co-infected hamsters was more upregulated compared to single infected with SARS-CoV-2 animals. Thus, co-infection with HAdV-5 or IAV and SARS-CoV-2 leads to more severe pulmonary disease in animals.

4.
Viruses ; 15(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36680245

ABSTRACT

BACKGROUND: Since most of the modern human population has no anti-smallpox immunity, it is extremely important to develop and implement effective drugs for the treatment of smallpox and other orthopoxvirus infections. The objective of this study is to determine the main characteristics of the chemical substance NIOCH-14 and its safety and bioavailability in the body of laboratory animals. METHODS: The safety of NIOCH-14 upon single- or multiple-dose intragastric administration was assessed according to its effect on the main hematological and pathomorphological parameters of laboratory mice and rats. In order to evaluate the pharmacokinetic parameters of NIOCH-14 administered orally, a concentration of ST-246, the active metabolite of NIOCH-14, in mouse blood and organs was determined by tandem mass spectrometry and liquid chromatography. RESULTS: The intragastric administration of NIOCH-14 at a dose of 5 g/kg body weight caused neither death nor signs of intoxication in mice. The intragastric administration of NIOCH-14 to mice and rats at doses of 50 and 150 µg/g body weight either as a single dose or once daily during 30 days did not cause animal death or critical changes in hematological parameters and the microstructure of internal organs. The tissue availability of NIOCH-14 administered orally to the mice at a dose of 50 µg/g body weight, which was calculated according to concentrations of its active metabolite ST-246 for the lungs, liver, kidney, brain, and spleen, was 100, 69.6, 63.3, 26.8 and 20.3%, respectively. The absolute bioavailability of the NIOCH-14 administered orally to mice at a dose of 50 µg/g body weight was 22.8%. CONCLUSION: Along with the previously determined efficacy against orthopoxviruses, including the smallpox virus, the substance NIOCH-14 was shown to be safe and bioavailable in laboratory animal experiments.


Subject(s)
Smallpox , Variola virus , Humans , Rats , Mice , Animals , Pharmaceutical Preparations , Administration, Oral , Animals, Laboratory
5.
Pathogens ; 11(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422639

ABSTRACT

The circulation of seasonal influenza in 2020-2021 around the world was drastically reduced after the start of the COVID-19 pandemic and the implementation of mitigation strategies. The influenza virus circulation reemerged in 2021-2022 with the global spread of the new genetic clade 3C.2a1b.2a.2 of A(H3N2) viruses. The purpose of this study was to characterize influenza viruses in the 2021-2022 season in Russia and to analyze the receptor specificity properties of the 3C.2a1b.2a.2 A(H3N2) viruses. Clinical influenza samples were collected at the local Sanitary-and-Epidemiological Centers of Rospotrebnadzor. Whole genome sequencing was performed using NGS. The receptor specificity of hemagglutinin was evaluated using molecular modeling and bio-layer interferometry. Clinical samples from 854 cases of influenza A and B were studied; A(H3N2) viruses were in the majority of the samples. All genetically studied A(H3N2) viruses belonged to the new genetic clade 3C.2a1b.2a.2. Molecular modeling analysis suggested a higher affinity of hemagglutinin of 3C.2a1b.2a.2. A(H3N2) viruses to the α2,6 human receptor. In vitro analysis using a trisaccharide 6'-Sialyl-N-acetyllactosamine receptor analog did not resolve the differences in the receptor specificity of 3C.2a1b.2a.2 clade viruses from viruses belonging to the 3C.2a1b.2a.1 clade. Further investigation of the A(H3N2) viruses is required for the evaluation of their possible adaptive advantages. Constant monitoring and characterization of influenza are critical for epidemiological analysis.

6.
Viruses ; 14(10)2022 09 29.
Article in English | MEDLINE | ID: mdl-36298709

ABSTRACT

In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptide Hydrolases , Membrane Glycoproteins
7.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: mdl-35746766

ABSTRACT

In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S. For the compounds that showed activity on the pseudoviral system, a study using three strains of the infectious SARS-CoV-2 virus was carried out. As a result, two leader compounds were found that showed activity on the Wuhan, Delta, and Omicron strains. Based on the biological results, we searched for the potential binding site of the leader compounds using molecular dynamics and molecular docking methods. We suggested that the compounds can bind in conserved regions of the central helices and/or heptad repeats of glycoprotein S of SARS-CoV-2 viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphanes , Esters , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/metabolism
8.
Viruses ; 14(1)2022 01 10.
Article in English | MEDLINE | ID: mdl-35062323

ABSTRACT

In this work, we evaluated the antiviral activity of Arbidol (Umifenovir) against SARS-CoV-2 using a pseudoviral system with the glycoprotein S of the SARS-CoV-2 virus on its surface. In order to search for binding sites to protein S of the virus, we described alternative binding sites of Arbidol in RBD and in the ACE-2-RBD complex. As a result of our molecular dynamics simulations combined with molecular docking data, we note the following fact: wherever the molecules of Arbidol bind, the interaction of the latter affects the structural flexibility of the protein. This interaction may result both in a change in the shape of the domain-enzyme binding interface and simply in a change in the structural flexibility of the domain, which can subsequently affect its affinity to the enzyme. In addition, we examined the possibility of Arbidol binding in the stem part of the surface protein. The possibility of Arbidol binding in different parts of the protein is not excluded. This may explain the antiviral activity of Arbidol. Our results could be useful for researchers searching for effective SARS-CoV-2 virus inhibitors targeting the viral entry stage.


Subject(s)
Antiviral Agents/chemistry , Indoles/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfides/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Binding Sites , Cell Survival/drug effects , HEK293 Cells , Humans , Indoles/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfides/pharmacology , Virus Internalization/drug effects
9.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011529

ABSTRACT

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 µM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Glycyrrhizic Acid/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , SARS-CoV-2/drug effects , Virus Replication , Animals , Antiviral Agents/chemical synthesis , COVID-19/virology , Chlorocebus aethiops , HIV Infections/virology , HeLa Cells , Humans , In Vitro Techniques , Vero Cells
10.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680072

ABSTRACT

Despite the fact that the variola virus is considered eradicated, the search for new small molecules with activity against orthopoxviruses remains an important task, especially in the context of recent outbreaks of monkeypox. As a result of this work, a number of amides of benzoic acids containing an adamantane fragment were obtained. Most of the compounds demonstrated activity against vaccinia virus, with a selectivity index SI = 18,214 for the leader compound 18a. The obtained derivatives also demonstrated activity against murine pox (250 ≤ SI ≤ 6071) and cowpox (125 ≤ SI ≤ 3036). A correlation was obtained between the IC50 meanings and the binding energy to the assumed biological target, the p37 viral protein with R2 = 0.60.


Subject(s)
Communicable Diseases , Orthopoxvirus , Variola virus , Mice , Animals , Amides/pharmacology , Vaccinia virus , Virus Replication
11.
Biomed Res Int ; 2021: 6662027, 2021.
Article in English | MEDLINE | ID: mdl-34258278

ABSTRACT

PURPOSE: The aim of this work was to analyze the complete genome of probiotic bacteria Lactobacillus plantarum 8 RA 3, Lactobacillus fermentum 90 TC-4, Lactobacillus fermentum 39, Bifidobacterium bifidum 791, Bifidobacterium bifidum 1, and Bifidobacterium longum 379 and to test their activity against influenza A and SARS-CoV-2 viruses. METHODS: To confirm the taxonomic affiliation of the bacterial strains, MALDI TOF mass spectrometry and biochemical test systems were used. Whole genome sequencing was performed on the Illumina Inc. MiSeq platform. To determine the antiviral activity, A/Lipetsk/1V/2018 (H1N1 pdm09) (EPI_ISL_332798) and A/common gull/Saratov/1676/2018 (H5N6) (EPI_ISL_336925) influenza viruses and SARS-CoV-2 virus strain Australia/VIC01/2020 (GenBank: MT007544.1) were used. RESULTS: All studied probiotic bacteria are nonpathogenic for humans and do not contain the determinants of transmission-type antibiotic resistance and integrated plasmids. Resistance to antibiotics of different classes is explained by the presence of molecular efflux pumps of the MatE and MFS families. Cultures of L. fermentum 90 TC 4, L. plantarum 8 RA 3, and B. bifidum 791 showed a pronounced activity against influenza A viruses in MDCK cells. Activity against the SARS-CoV-2 virus was demonstrated only by the L. fermentum 90 TC 4 strain in VERO cells. CONCLUSIONS: The studied probiotic bacteria are safe, have antiviral activity, and are of great importance for the prevention of diseases caused by respiratory viruses that can also infect the human intestine.


Subject(s)
Bifidobacterium longum/genetics , COVID-19/metabolism , Lactobacillus/genetics , Probiotics/pharmacology , SARS-CoV-2/metabolism , Animals , COVID-19/therapy , Chlorocebus aethiops , Dogs , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human , Madin Darby Canine Kidney Cells , Vero Cells
12.
Microorganisms ; 9(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067124

ABSTRACT

Capripoxviruses with a host range limited to ruminants have the great potential to be used as vaccine vectors. The aim of this work was to evaluate attenuated sheep pox virus (SPPV) vaccine strain NISKHI as a vector expressing several genes. Open reading frames SPPV020 (ribonucleotide kinase) and SPPV066 (thymidine kinase) were selected as sites for the insertion of foreign genes. Two integration plasmids with expression cassette were designed and constructed. Recombinant SPPVs expressing an enhanced green fluorescent protein (EGFP) (rSPPV(RRΔ)EGFP and rSPPV(TKΔ)EGFP), Foot-and-mouth disease virus capsid protein (VP1), and Brucella spp. outer membrane protein 25 (OMP25) (rSPPV(RRΔ)VP1A-(TKΔ)OMP25) were generated under the transient dominant selection method. The insertion of foreign genes into the SPPV020 and SPPV066 open reading frames did not influence the replication of the recombinant viruses in the cells. Successful foreign gene expression in vitro was assessed by luminescent microscopy (EGFP) and Western blot (VP1 and OMP25). Our results have shown that foreign genes were expressed by rSPPV both in permissive (lamb testicles) and non-permissive (bovine kidney, saiga kidney, porcine kidney) cells. Mice immunized with rSPPV(RRΔ)VP1A-(TKΔ)OMP25 elicited specific antibodies to both SPPV and foreign genes VP1 and OMP25. Thus, SPPV NISKHI may be used as a potential safe immunogenic viral vector for the development of polyvalent vaccines.

13.
Euro Surveill ; 26(24)2021 06.
Article in English | MEDLINE | ID: mdl-34142650

ABSTRACT

This study presents the isolation of influenza A(H5N8) virus clade 2.3.4.4b from a poultry worker during an outbreak of highly pathogenic avian influenza A(H5N8) among chickens at a poultry farm in Astrakhan, Russia in December 2020. Nasopharyngeal swabs collected from seven poultry workers were positive for influenza A(H5N8), as confirmed by RT-PCR and sequencing. The influenza A(H5N8) virus was isolated from one of the human specimens and characterised. Sporadic human influenza A(H5)2.3.4.4. infections represent a possible concern for public health.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Disease Outbreaks , Farms , Humans , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology , Russia/epidemiology
14.
Eur J Med Chem ; 221: 113485, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33965861

ABSTRACT

Currently, smallpox, caused by the variola virus belonging to the poxvirus family, has been completely eradicated according to the WHO. However, other representatives of poxviruses, such as vaccinia virus, cowpox virus, ectromelia virus, monkeypox virus, mousepox virus and others, remain in the natural environment and can infect both animals and humans. The pathogens of animal diseases, belonging to the category with a high epidemic risk, have already caused several outbreaks among humans, and can, in an unfavorable combination of circumstances, cause not only an epidemic, but also a pandemic. Despite the fact that there are protocols for the treatment of poxvirus infections, the targeted design of new drugs will increase their availability and expand the arsenal of antiviral chemotherapeutic agents. One of the potential targets of poxviruses is the p37 protein, which is a tecovirimat target. This protein is relatively small, has no homologs among proteins of humans and other mammals and is necessary for the replication of viral particles, which makes it attractive target for virtual screening. Using the I-TASSER modelling and molecular dynamics refinement the p37 orthopox virus protein model was obtained and its was confirmed by ramachandran plot analysis and superimposition of the model with the template protein with similar function. A virtual library of adamantane containing compounds was generated and a number of potential inhibitors were chosen from virtual library using molecular docking. Several compounds bearing adamantane moiety were synthesized and their biological activity was tested in vitro on vaccinia, cowpox and mousepox viruses. The new compounds inhibiting vaccinia virus replication with IC50 concentrations between 0.133 and 0.515 µM were found as a result of the research. The applied approach can be useful in the search of new inhibitors of orthopox reproduction. The proposed approach may be suitable for the design of new poxvirus inhibitors containing cage structural moiety.


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Drug Design , Membrane Proteins/antagonists & inhibitors , Poxviridae/drug effects , Viral Envelope Proteins/antagonists & inhibitors , Adamantane/chemical synthesis , Adamantane/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Membrane Proteins/metabolism , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Viral Envelope Proteins/metabolism
15.
Biochemistry (Mosc) ; 86(3): 243-247, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33838626

ABSTRACT

Many viruses, beside binding to their main cell target, interact with other molecules that promote virus adhesion to the cell; often, these additional targets are glycans. The main receptor for SARS-CoV-2 is a peptide motif in the ACE2 protein. We studied interaction of the recombinant SARS-CoV-2 spike (S) protein with an array of glycoconjugates, including various sialylated, sulfated, and other glycans, and found that the S protein binds some (but not all) glycans of the lactosamine family. We suggest that parallel influenza infection will promote SARS-CoV-2 adhesion to the respiratory epithelial cells due to the unmasking of lactosamine chains by the influenza virus neuraminidase.


Subject(s)
Amino Sugars/metabolism , COVID-19/metabolism , COVID-19/virology , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Sugars/chemistry , Carbohydrate Sequence , Humans , In Vitro Techniques , Models, Molecular , Polysaccharides/chemistry , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
16.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924393

ABSTRACT

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Bicyclic Monoterpenes/chemistry , Antiviral Agents/chemistry , Ebolavirus/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Orthomyxoviridae/drug effects , Protein Structure, Secondary , Pyrrolidines/chemistry
17.
Biosensors (Basel) ; 11(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921281

ABSTRACT

The detection of influenza A virions with a nanoribbon detector (NR detector) has been demonstrated. Chips for the detector have been fabricated based on silicon-on-insulator nanoribbon structures (SOI nanoribbon chip), using a complementary metal-oxide-semiconductor (CMOS)-compatible technology-by means of gas-phase etching and standard optical photolithography. The surface of the SOI nanoribbon chip contains a matrix of 10 nanoribbon (NR) sensor elements. SOI nanoribbon chips of n-type conductance have been used for this study. For biospecific detection of target particles, antibodies against influenza virus have been covalently immobilized onto NRs. Influenza A virus detection was performed by real-time registration of the source-drain current through the NRs. The detection of the target viral particles was carried out in buffer solutions at the target particles concentration within the range from 107 to 103 viral particles per milliliter (VP/mL). The lowest detectable concentration of the target viral particles was 6 × 10-16 M (corresponding to 104 VP/mL). The use of solutions containing ~109 to 1010 VP/mL resulted in saturation of the sensor surface with the target virions. In the saturation mode, detection was impossible.


Subject(s)
Biosensing Techniques , Orthomyxoviridae/isolation & purification , Transistors, Electronic , Nanotubes, Carbon , Nanowires , Oligonucleotide Array Sequence Analysis , Oxides , Semiconductors , Silicon
18.
J Pharm Biomed Anal ; 199: 114062, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33862506

ABSTRACT

The stability of the new antifiloviral agent AS-358, which is a derivative of borneol and 3-(piperidin-1-yl)propanoic acid, was studied in the blood and blood plasma of rats in vitro. It was found that both in the blood and in the plasma stabilized by EDTA or heparin, the compound is rapidly hydrolyzed at the ester bond. When sodium fluoride was added to the whole blood, the decomposition of the compound was significantly slowed down, which made it possible to develop and validate a method for the quantitative determination of the agent in this matrix. The method was validated in terms of selectivity, calibration dependence, LLOQ, accuracy and precision, stability in an autosampler, recovery, and carry-over. A 8:2 v/v mixture of methanol containing 2-adamantylamine hydrochloride (internal standard, IS) with 0.2 M aqueous zinc sulfate was used for blood sample treatment and protein precipitation. Analysis was performed by HPLC-MS/MS using reversed phase chromatography. MS/MS detection was performed on a triple quadrupole mass spectrometer 6500 QTRAP (SCIEX) in multiple reaction monitoring (MRM) mode. The transitions 294.5→158.2/98.1 and 152.2→107.2/93.1 were monitored for AS-358 and the IS, respectively. The calibration curve was built in the concentration range of 1-500 ng/mL, the intra-day and inter-day accuracy and precision, carry-over and recovery were within the acceptable limits. The developed method was used for a preliminary study of the pharmacokinetics of the agent AS-358 after its oral administration to rats. It was shown that when the substance was administered at a dose of 200 mg/kg, its concentration in the blood of animals reached 550 ng/mL after 1 h, despite its instability in blood.


Subject(s)
Propionates , Tandem Mass Spectrometry , Animals , Camphanes , Chromatography, High Pressure Liquid , Rats , Reproducibility of Results
19.
PLoS One ; 16(4): e0251019, 2021.
Article in English | MEDLINE | ID: mdl-33914831

ABSTRACT

Outbreaks of influenza, which is a contagious respiratory disease, occur throughout the world annually, affecting millions of people with many fatal cases. The D222G/N mutations in the hemagglutinin (HA) gene of A(H1N1)pdm09 are associated with severe and fatal human influenza cases. These mutations lead to increased virus replication in the lower respiratory tract (LRT) and may result in life-threatening pneumonia. Targeted NGS analysis revealed the presence of mutations in major and minor variants in 57% of fatal cases, with the proportion of viral variants with mutations varying from 1% to 98% in each individual sample in the epidemic season 2018-2019 in Russia. Co-occurrence of the mutations D222G and D222N was detected in a substantial number of the studied fatal cases (41%). The D222G/N mutations were detected at a low frequency (less than 1%) in the rest of the studied samples from fatal and nonfatal cases of influenza. The presence of HA D222Y/V/A mutations was detected in a few fatal cases. The high rate of occurrence of HA D222G/N mutations in A(H1N1)pdm09 viruses, their increased ability to replicate in the LRT and their association with fatal outcomes points to the importance of monitoring the mutations in circulating A(H1N1)pdm09 viruses for the evaluation of their epidemiological significance and for the consideration of disease prevention and treatment options.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/mortality , Sequence Analysis, RNA/methods , Animals , Cadaver , Dogs , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Madin Darby Canine Kidney Cells , Mutation , Polymorphism, Genetic , Prevalence , Russia/epidemiology , Virus Replication
20.
Bioorg Med Chem Lett ; 40: 127926, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33705902

ABSTRACT

This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system. It was found that the hit compound possesses significant activity (IC50 = 7.6 ± 2 µM) along with low toxicity (CC50 > 1000 µM). Using molecular docking procedures, the binding with Hantavirus nucleoprotein was evaluated and the correlation between the structure of the synthesised compounds and the antiviral activity was established.


Subject(s)
Antiviral Agents/pharmacology , Camphanes/pharmacology , Hantaan virus/drug effects , Hydrazones/pharmacology , Isoindoles/pharmacology , Norbornanes/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Camphanes/chemical synthesis , Camphanes/metabolism , Capsid Proteins/metabolism , Dogs , Drug Design , HEK293 Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/metabolism , Isoindoles/chemical synthesis , Isoindoles/metabolism , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Docking Simulation , Norbornanes/chemical synthesis , Norbornanes/metabolism , Protein Binding , Viral Core Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...