Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Infect Immun ; 92(7): e0007724, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38869295

ABSTRACT

The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.


Subject(s)
Leukocyte L1 Antigen Complex , Manganese , Streptococcal Infections , Streptococcus pyogenes , Manganese/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/immunology , Animals , Humans , Mice , Leukocyte L1 Antigen Complex/metabolism , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions/immunology , Saliva/microbiology , Saliva/immunology , Disease Models, Animal
2.
Nat Microbiol ; 9(2): 502-513, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228859

ABSTRACT

Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.


Subject(s)
Probiotics , Streptococcal Infections , Animals , Humans , Mice , Anti-Bacterial Agents , Streptococcal Infections/microbiology , Streptococcus pyogenes , Saliva
3.
Nat Commun ; 14(1): 5947, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741855

ABSTRACT

The human pathogen Streptococcus pyogenes secretes a short peptide (leaderless communication peptide, LCP) that mediates intercellular communication and controls bacterial virulence through interaction with its receptor, RopB. Here, we show that LCP and RopB homologues are present in other Firmicutes. We experimentally validate that LCPs with distinct peptide communication codes act as bacterial intercellular signals and regulate gene expression in Streptococcus salivarius, Streptococcus porcinus, Enterococcus malodoratus and Limosilactobacillus reuteri. Our results indicate that LCPs are more widespread than previously thought, and their characterization may uncover new signaling mechanisms and roles in coordinating diverse bacterial traits.


Subject(s)
Firmicutes , Quorum Sensing , Humans , Cell Communication , Peptides , Phenotype
4.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751396

ABSTRACT

Tissue injury is typically accompanied by inflammation. In Drosophila melanogaster larvae, wound-induced inflammation involves adhesive capture of hemocytes at the wound surface followed by hemocyte spreading to assume a flat, lamellar morphology. The factors that mediate this cell spreading at the wound site are not known. Here, we discover a role for the platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr) and its ligand, Pvf1, in blood cell spreading at the wound site. Pvr and Pvf1 are required for spreading in vivo and in an in vitro spreading assay where spreading can be directly induced by Pvf1 application or by constitutive Pvr activation. In an effort to identify factors that act downstream of Pvr, we performed a genetic screen in which select candidates were tested to determine if they could suppress the lethality of Pvr overexpression in the larval epidermis. Some of the suppressors identified are required for epidermal wound closure (WC), another Pvr-mediated wound response, some are required for hemocyte spreading in vitro, and some are required for both. One of the downstream factors, Mask, is also required for efficient wound-induced hemocyte spreading in vivo. Our data reveal that Pvr signaling is required for wound responses in hemocytes (cell spreading) and defines distinct downstream signaling factors that are required for either epidermal WC or hemocyte spreading.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Egg Proteins/physiology , Epidermis , Hemocytes , Larva/genetics , Receptor Protein-Tyrosine Kinases , Vascular Endothelial Growth Factor A
5.
Infect Immun ; 88(8)2020 07 21.
Article in English | MEDLINE | ID: mdl-32393509

ABSTRACT

Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.


Subject(s)
Bacterial Proteins/genetics , Host-Pathogen Interactions/immunology , Leukocyte L1 Antigen Complex/immunology , Regulon , Streptococcal Infections/immunology , Streptococcus pyogenes/pathogenicity , Zinc/metabolism , Animals , Bacterial Proteins/immunology , Binding Sites , Binding, Competitive , Calgranulin B/genetics , Calgranulin B/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Ion Transport , Leukocyte L1 Antigen Complex/genetics , Mice , Mice, Knockout , Protein Binding , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/mortality , Streptococcus pyogenes/immunology , Streptococcus pyogenes/metabolism , Survival Analysis , Virulence , Zinc/immunology
7.
Nucleic Acids Res ; 47(14): 7476-7493, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31188450

ABSTRACT

Pathogenic bacteria encounter host-imposed manganese (Mn) limitation during infection. Herein we report that in the human pathogen Streptococcus pyogenes, the adaptive response to Mn limitation is controlled by a DtxR family metalloregulator, MtsR. Genes upregulated by MtsR during Mn limitation include Mn (mtsABC) and Fe acquisition systems (sia operon), and a metal-independent DNA synthesis enzyme (nrdFEI.2). To elucidate the mechanism of metal sensing and gene regulation by MtsR, we determined the crystal structure of MtsR. MtsR employs two Mn-sensing sites to monitor metal availability, and metal occupancy at each site influences MtsR regulatory activity. The site 1 acts as the primary Mn sensing site, and loss of metal at site 1 causes robust upregulation of mtsABC. The vacant site 2 causes partial induction of mtsABC, indicating that site 2 functions as secondary Mn sensing site. Furthermore, we show that the C-terminal FeoA domains of adjacent dimers participate in the oligomerization of MtsR on DNA, and multimerization is critical for MtsR regulatory activity. Finally, the mtsR mutant strains defective in metal sensing and oligomerization are attenuated for virulence in a mouse model of invasive infection, indicating that Mn sensing and gene regulation by MtsR are critical processes during S. pyogenes infection.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Manganese/metabolism , Streptococcus pyogenes/genetics , Adaptation, Physiological/genetics , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Manganese/chemistry , Mice , Models, Molecular , Mutation , Protein Domains , Sequence Homology, Amino Acid , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Virulence/genetics
8.
Nat Commun ; 10(1): 2586, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197146

ABSTRACT

Bacteria control gene expression in concert with their population density by a process called quorum sensing, which is modulated by bacterial chemical signals and environmental factors. In the human pathogen Streptococcus pyogenes, production of secreted virulence factor SpeB is controlled by a quorum-sensing pathway and environmental pH. The quorum-sensing pathway consists of a secreted leaderless peptide signal (SIP), and its cognate receptor RopB. Here, we report that the SIP quorum-sensing pathway has a pH-sensing mechanism operative through a pH-sensitive histidine switch located at the base of the SIP-binding pocket of RopB. Environmental acidification induces protonation of His144 and reorganization of hydrogen bonding networks in RopB, which facilitates SIP recognition. The convergence of two disparate signals in the SIP signaling pathway results in induction of SpeB production and increased bacterial virulence. Our findings provide a model for investigating analogous crosstalk in other microorganisms.


Subject(s)
Bacterial Proteins/metabolism , Exotoxins/metabolism , Gene Expression Regulation, Bacterial/physiology , Quorum Sensing/physiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Animals , Disease Models, Animal , Female , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Protein Sorting Signals/physiology , Signal Transduction/physiology , Streptococcal Infections/mortality , Streptococcus pyogenes/physiology , Virulence/physiology
9.
PLoS Pathog ; 14(10): e1007354, 2018 10.
Article in English | MEDLINE | ID: mdl-30379939

ABSTRACT

The control of virulence regulator/sensor kinase (CovRS) two-component system is critical to the infectivity of group A streptococcus (GAS), and CovRS inactivating mutations are frequently observed in GAS strains causing severe human infections. CovS modulates the phosphorylation status and with it the regulatory effect of its cognate regulator CovR via its kinase and phosphatase activity. However, the contribution of each aspect of CovS function to GAS pathogenesis is unknown. We created isoallelic GAS strains that differ only by defined mutations which either abrogate CovR phosphorylation, CovS kinase or CovS phosphatase activity in order to test the contribution of CovR phosphorylation levels to GAS virulence, emergence of hypervirulent CovS-inactivated strains during infection, and GAS global gene expression. These sets of strains were created in both serotype M1 and M3 backgrounds, two prevalent GAS disease-causing serotypes, to ascertain whether our observations were serotype-specific. In both serotypes, GAS strains lacking CovS phosphatase activity (CovS-T284A) were profoundly impaired in their ability to cause skin infection or colonize the oropharynx in mice and to survive neutrophil killing in human blood. Further, response to the human cathelicidin LL-37 was abrogated. Hypervirulent GAS isolates harboring inactivating CovRS mutations were not recovered from mice infected with M1 strain M1-CovS-T284A and only sparsely recovered from mice infected with M3 strain M3-CovS-T284A late in the infection course. Consistent with our virulence data, transcriptome analyses revealed increased repression of a broad array of virulence genes in the CovS phosphatase deficient strains, including the genes encoding the key anti-phagocytic M protein and its positive regulator Mga, which are not typically part of the CovRS transcriptome. Taken together, these data establish a key role for CovS phosphatase activity in GAS pathogenesis and suggest that CovS phosphatase activity could be a promising therapeutic target in GAS without promoting emergence of hypervirulent CovS-inactivated strains.


Subject(s)
Bacterial Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nasopharynx/microbiology , Phosphoric Monoester Hydrolases/metabolism , Skin/microbiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Histidine Kinase , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Hairless , Nasopharynx/enzymology , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Serogroup , Skin/enzymology , Streptococcal Infections/enzymology , Streptococcus pyogenes/enzymology , Virulence
10.
Infect Immun ; 86(5)2018 05.
Article in English | MEDLINE | ID: mdl-29531135

ABSTRACT

Bacterial virulence factor production is a highly coordinated process. The temporal pattern of bacterial gene expression varies in different host anatomic sites to overcome niche-specific challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic global regulator, RopB, controls speB expression in concert with bacterial population density. The SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in saliva that includes a transient burst of speB expression during early stages of growth coupled with sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for future translational studies.


Subject(s)
Oropharynx/immunology , Quorum Sensing/immunology , Signal Transduction/immunology , Streptococcal Infections/immunology , Streptococcus pyogenes/growth & development , Virulence Factors/immunology , Virulence/immunology , Animals , Gene Expression Regulation, Bacterial , Humans , Mice , Oropharynx/microbiology , Oropharynx/physiopathology , Quorum Sensing/physiology , Signal Transduction/physiology , Virulence/genetics , Virulence Factors/genetics
11.
Metallomics ; 9(12): 1693-1702, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29043347

ABSTRACT

Group A Streptococccus (GAS) is a major human pathogen that causes significant morbidity and mortality. Zinc is an essential trace element required for GAS growth, however, zinc can be toxic at excess concentrations. The bacterial strategies to maintain zinc sufficiency without incurring zinc toxicity play a crucial role in host-GAS interactions and have a significant impact on GAS pathogenesis. The host deploys nutritional immune mechanisms to retard GAS growth by causing either zinc deprivation or zinc poisoning. However, GAS overcomes the zinc-dependent host defenses and survives in the hostile environment by employing complex adaptive strategies. In this review, we describe the different host immune strategies that employ either zinc limitation or zinc toxicity in different host environments to control GAS infection. We also discuss the molecular mechanisms and machineries used by GAS to evade host nutritional defenses and establish successful infection. Emerging evidence suggests that the metal transporters are major GAS virulence factors as they compete against host nutritional immune mechanisms to acquire or expel metals and promote bacterial survival in the host. Thus, identification of GAS molecules and elucidation of the mechanisms by which GAS combats host-mediated alterations in zinc availability may lead to novel interference strategies targeting GAS metal acquisition systems.


Subject(s)
Heavy Metal Poisoning , Homeostasis , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Virulence Factors/metabolism , Zinc/metabolism , Host-Pathogen Interactions/drug effects , Humans , Streptococcus pyogenes/physiology
12.
Proc Natl Acad Sci U S A ; 114(40): E8498-E8507, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923955

ABSTRACT

Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.


Subject(s)
Bacterial Proteins/metabolism , Exotoxins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Peptide Fragments/pharmacology , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Virulence , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Base Sequence , Exotoxins/genetics , Gene Expression Profiling , Humans , Mice , Sequence Homology , Streptococcal Infections/genetics , Streptococcal Infections/metabolism , Streptococcus pyogenes/isolation & purification
13.
EBioMedicine ; 21: 131-141, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28596134

ABSTRACT

Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Streptococcus pyogenes/immunology , Zinc/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Leukocyte L1 Antigen Complex/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Models, Molecular , Protein Conformation , Streptococcal Infections/microbiology , Streptococcal Infections/mortality , Streptococcal Vaccines/immunology
14.
Infect Immun ; 85(6)2017 06.
Article in English | MEDLINE | ID: mdl-28348051

ABSTRACT

Group A Streptococcus (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defenses and suggested to protect against zinc toxicity. Here, we report that PmtA is a P1B4-type ATPase that functions as an Fe(II) exporter and aids GAS defenses against iron intoxication and oxidative stress. The expression of pmtA is specifically induced by excess iron, and this induction requires PerR. Furthermore, a pmtA mutant exhibited increased sensitivity to iron toxicity and oxidative stress due to an elevated intracellular accumulation of iron. RNA-sequencing analysis revealed that GAS undergoes significant alterations in gene expression to adapt to iron toxicity. Finally, using two mouse models of invasive infection, we demonstrated that iron efflux by PmtA is critical for bacterial survival during infection and GAS virulence. Together, these data demonstrate that PmtA is a key component of GAS antioxidant defenses and contributes significantly to GAS virulence.


Subject(s)
Bacterial Proteins/metabolism , Methyltransferases/metabolism , Oxidative Stress , Repressor Proteins/metabolism , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/pharmacology , Methyltransferases/genetics , Mice , RNA, Bacterial/genetics , Regulon , Repressor Proteins/genetics , Streptococcal Infections/genetics , Streptococcal Infections/microbiology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Virulence
15.
J Bacteriol ; 199(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27795318

ABSTRACT

Group A Streptococcus (GAS) (Streptococcus pyogenes) causes more than 700 million human infections each year. The significant morbidity and mortality rates associated with GAS infections are in part a consequence of the ability of this pathogen to coordinately regulate virulence factor expression during infection. RofA-like protein IV (RivR) is a member of the Mga-like family of transcriptional regulators, and previously we reported that RivR negatively regulates transcription of the hasA and grab virulence factor-encoding genes. Here, we determined that RivR inhibits the ability of GAS to survive and to replicate in human blood. To begin to assess the biochemical basis of RivR activity, we investigated its ability to form multimers, which is a characteristic of Mga-like proteins. We found that RivR forms both dimers and a higher-molecular-mass multimer, which we hypothesize is a tetramer. As cysteine residues are known to contribute to the ability of proteins to dimerize, we created a library of expression plasmids in which each of the four cysteines in RivR was converted to serine. While the C68S RivR protein was essentially unaffected in its ability to dimerize, the C32S and C377S proteins were attenuated, while the C470S protein completely lacked the ability to dimerize. Consistent with dimerization being required for regulatory activity, the C470S RivR protein was unable to repress hasA and grab gene expression in a rivR mutant. Thus, multimer formation is a prerequisite for RivR activity, which supports recent data obtained for other Mga-like family members, suggesting a common regulatory mechanism. IMPORTANCE: The modulation of gene transcription is key to the ability of bacterial pathogens to infect hosts to cause disease. Here, we discovered that the group A Streptococcus transcription factor RivR negatively regulates the ability of this pathogen to survive in human blood, and we also began biochemical characterization of this protein. We determined that, in order for RivR to function, it must self-associate, forming both dimers (consisting of two RivR proteins) and higher-order complexes (consisting of more than two RivR proteins). This functional requirement for RivR is shared by other regulators in the same family of proteins, suggesting a common regulatory mechanism. Insight into how these transcription factors function may facilitate the development of novel therapeutic agents targeting their activity.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Transcription Factors/metabolism , Bacterial Proteins/genetics , Point Mutation , Protein Conformation , Streptococcus pyogenes/genetics , Transcription Factors/genetics , Virulence
16.
Mol Microbiol ; 99(6): 1119-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26714274

ABSTRACT

Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated the presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Streptococcus pyogenes/pathogenicity , Virulence Factors/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Exotoxins/metabolism , Gene Expression Regulation, Bacterial , Protein Sorting Signals , Protein Structure, Secondary , Streptococcal Infections/microbiology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Structure-Activity Relationship , Transcription, Genetic , Virulence
17.
J Bacteriol ; 197(23): 3720-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26391206

ABSTRACT

UNLABELLED: The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. IMPORTANCE: More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small RNA FasX. In addition to identifying that FasX reduces the abundance of the cell surface-located fibronectin-binding proteins PrtF1/2, fibronectin is present in high abundance in human tissues, and we have determined the mechanism behind this regulation. Importantly, as FasX is the only mechanistically characterized regulatory RNA in GAS, it serves as a model RNA in this and related pathogens.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Streptococcus pyogenes/genetics , 5' Untranslated Regions , Bacterial Proteins/metabolism , Base Sequence , Carrier Proteins/metabolism , Down-Regulation , Fibronectins/metabolism , Molecular Sequence Data , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Streptococcus pyogenes/metabolism
18.
Infect Immun ; 83(6): 2382-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25824840

ABSTRACT

Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis.


Subject(s)
Fasciitis, Necrotizing/microbiology , Gene Expression Regulation, Bacterial/physiology , Streptococcus pyogenes/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mice , Models, Molecular , Mutagenesis, Site-Directed , Phosphorylation , Protein Conformation , Streptococcus pyogenes/genetics , Virulence
19.
Nucleic Acids Res ; 43(1): 418-32, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25510500

ABSTRACT

Altering zinc bioavailability to bacterial pathogens is a key component of host innate immunity. Thus, the ability to sense and adapt to the alterations in zinc concentrations is critical for bacterial survival and pathogenesis. To understand the adaptive responses of group A Streptococcus (GAS) to zinc limitation and its regulation by AdcR, we characterized gene regulation by AdcR. AdcR regulates the expression of 70 genes involved in zinc acquisition and virulence. Zinc-bound AdcR interacts with operator sequences in the negatively regulated promoters and mediates differential regulation of target genes in response to zinc deficiency. Genes involved in zinc mobilization and conservation are derepressed during mild zinc deficiency, whereas the energy-dependent zinc importers are upregulated during severe zinc deficiency. Further, we demonstrated that transcription activation by AdcR occurs by direct binding to the promoter. However, the repression and activation by AdcR is mediated by its interactions with two distinct operator sequences. Finally, mutational analysis of the metal ligands of AdcR caused impaired DNA binding and attenuated virulence, indicating that zinc sensing by AdcR is critical for GAS pathogenesis. Together, we demonstrate that AdcR regulates GAS adaptive responses to zinc limitation and identify molecular components required for GAS survival during zinc deficiency.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/metabolism , Streptococcus pyogenes/genetics , Trans-Activators/metabolism , Zinc/metabolism , Adaptation, Physiological/genetics , Animals , Binding Sites , Mice , Promoter Regions, Genetic , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Transcriptional Activation , Virulence
20.
Am J Pathol ; 185(2): 462-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25476528

ABSTRACT

Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype-patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes.


Subject(s)
Bacterial Proteins , Joint Diseases , Mutation, Missense , Polymorphism, Single Nucleotide , Streptococcal Infections , Streptococcus pyogenes , Amino Acid Substitution , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Female , Genome, Bacterial , Humans , Joint Diseases/genetics , Joint Diseases/metabolism , Joint Diseases/microbiology , Joint Diseases/pathology , Mice , Mice, Hairless , Streptococcal Infections/genetics , Streptococcal Infections/metabolism , Streptococcal Infections/pathology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...