Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 30(8): 256, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972935

ABSTRACT

CONTEXT: Iridoviruses, a group of double-stranded DNA viruses, pose a significant threat to various aquatic animals, causing substantial economic losses in aquaculture and impacting ecosystem health. Early and accurate detection of these viruses is crucial for effective disease management and control. Conventional diagnostic methods, including polymerase chain reaction (PCR) and virus isolation, often require specialized laboratories, skilled personnel, and considerable time. This highlights the need for rapid, sensitive, and cost-effective diagnostic tools for iridovirus detection. Single-layer graphene, a two-dimensional material with unique properties like high surface area, excellent electrical conductivity, and chemical stability, has emerged as a versatile platform for biosensing applications. This paper explores the potential of employing single-layer graphene in the development of a bionanosensor for the sensitive and rapid detection of iridoviruses. The aim of the present investigation is to develop a sensor by analyzing the vibrational responses of single-layer graphene sheets (SLGS) with attached microorganisms. Graphene-based virus sensors typically rely on the interaction between the virus and the graphene surface, which lead to changes in the frequency response of graphene. This change is measured and used to detect the presence of the virus. Its high surface-to-volume ratio and sensitivity to changes in its frequency make it a highly sensitive platform for virus detection. METHODS: We employ finite element method (FEM) analysis to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of iridovirus. Bridged and simply supported with roller support boundary conditions applied at the ends of SLG structure. Simulations have been performed to see how SLG behaves when used as sensors. A single-layer graphene armchair SLG (5,5) with 50-nm length exhibits its highest frequency vibration at 8.66 × 106 Hz, with a mass of 1.2786 Zg. In contrast, a zigzag-SLG with a (18,0) configuration has its lowest frequency vibration at 2.82 × 105 Hz. This aids in comprehending the thresholds of detection and the influence of factors such as size, and boundary conditions on sensor effectiveness. These biosensors can be especially helpful in biological sciences and the medical field since they can considerably improve the treatment of patients, cancer early diagnosis, and pathogen identification when used in clinical environments.


Subject(s)
Biosensing Techniques , Graphite , Iridovirus , Graphite/chemistry , Biosensing Techniques/methods
2.
J Mol Model ; 29(12): 382, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987806

ABSTRACT

CONTEXT: Graphene based nano sensors have huge potential in an era of sensor technology. The objective of this study is to create a sensor by investigating the vibration responses of cantilever and bridged boundary conditioned single layer graphene sheets (SLGS) with various attached microorganisms on the tip and at the centre of the sheet. The Parvoviridae, Flaviviridae, and Polyomaviridae biological substances have been comprehensively investigated here. For the Parvoviridae, Polyomaviridae, and Flaviviridae categories of targeted microbes, the sizes are 21nm, 40nm, and 45nm, respectively. The Parvoviridae family has a maximum frequency of 1.87x107 Hz with a cantilever condition and a mass of 4.2441 Zg, and for a bridged condition, it demonstrates a maximum frequency of 1.23x108 Hz with the same mass on armchair SLG (5 5). The data analysis shows that 3.0041 Zg mass of the Mimivirus has the lowest frequency. It demonstrates explicitly that the rate of frequency decreases as the value of mass increases. When compared to chiral SLG, the armchair single layer graphene sheet performs better. The research indicates that the dynamic properties are significantly influenced by the mass of various biological organisms. The application of this sensor will enable the detection of microorganisms or viruses that can be connected to SLG. METHODS: In this research, the application of Single Layer Graphene (SLG) as a virus sensing device is explored. Atomistic finite element method (AFEM) has been used to carry out the dynamic analysis of SLG. Molecular dynamic analysis and simulations have been performed to see how SLG behaves when employed as sensors for biological entities and when they are exposed to bridged and cantilever boundary conditions. The frequency analysis was performed using ANSYS APDL software. SLG of various chirality has been utilised in the investigation. By altering the applied mass of a biological object, the difference in frequency observed. The idea behind mass detection employing nano biosensors is built on the concept that the stiffness of a biomolecule changes as its mass changes, making the resonant frequency extremely sensitive to that change. A shift in the resonance frequency results from a change in the associated mass on the graphene sheet. The main challenge in mass detection is estimating the variation in resonant frequency driven by the mass of the connected molecule. The SLG-based biosensor has a specific application in the early identification of diseases. The biosensor investigated in this article is novel, whereas the biosensors that are presently on the market operate using the ionization method. The simulations result shows SLG based biosensor's sensitivity considerably faster than an existing one.


Subject(s)
Biosensing Techniques , Graphite , Vibration , Biosensing Techniques/methods
3.
J Mol Model ; 29(5): 149, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37074494

ABSTRACT

CONTEXT: Nanosensors and actuators are frequently made of graphene. Any defect in the graphene's manufacturing has an impact on its sensing performance and on its dynamic behaviour. Using a molecular dynamics technique, the influence of pinhole defects and atomic defects on the performance parameters of single-layer graphene sheets (SLGSs) and double-layer graphene sheets (DLGSs) with various boundary conditions and lengths is explored. In contrast to the perfect nanostructure of a graphene sheet, defects are described as holes formed by atomic vacancies. As the number of defects increases, the simulation results show that the presence of defects has the greatest impact on the resonance frequency of SLGSs and DLGSs. The influence of pinhole defect (PD) and atomic vacancy defect (AVD) on armchair, zigzag, and chiral SLGSs and DLGSs was investigated in this article using molecular dynamics simulation. The influence of both types of defects is largest when it is adjacent to the fixed support for all three different types of graphene sheets, i.e. armchair, zigzag, and chiral. METHODS: The structure of the graphene sheet has been created using ANSYS APDL software. In the structure of the graphene sheet, atomic and pinhole defects have been generated. SLG and DLG sheets are modelled using a space frame structure that is identical to a three-dimensional beam. Dynamic analysis of single-layer and double-layer graphene sheets performed with different lengths using the atomistic finite element method. The interlayer separation in the form of Van der Waals interaction is modelled using characteristic spring element (Combin14). The upper and lower sheets of DLGSs are described as elastic beams connected by a spring element. With atomic vacancy defect for the bridged boundary condition, the highest frequency of 2.86 × 108 Hz was found for zigzag DLG (20 0) and with same boundary condition for pinhole defect 2.79 × 108 Hz frequency achieved. In a single-layer graphene sheet with an atomic vacancy and cantilever boundary condition, the maximum efficiency was 4.13 × 103 Hz for SLG (20 0), while in a pinhole defect, it produced 2.73 × 107 Hz. Moreover, the elastic parameters of beam components are calculated using the mechanical properties of covalent bonds between carbon atoms in the hexagonal lattice. The model has been tested against previous research. The focus of this research is to develop a mechanism for determining how defects affect graphene frequency band in application as nano resonators.

4.
Materials (Basel) ; 15(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36013692

ABSTRACT

Graphene has been widely and extensively used in mass sensing applications. The present study focused on exploring the use of single-layer graphene (SLG) and double-layer graphene (DLG) as sensing devices. The dynamic analysis of SLG and DLG with different boundary conditions (BDs) and length was executed using the atomistic finite element method (AFEM). SLG and DLG sheets were modelled and considered as a space-frame structure similar to a 3D beam. Spring elements (Combin14) were used to identify the interlayer interactions between two graphene layers in the DLG sheet due to the van der Waals forces. Simulations were carried out to visualize the behavior of the SLG and DLG subjected to different BDs and when used as mass sensing devices. The variation in frequency was noted by changing the length and applied mass of the SLGs and DLGs. The quantity of the frequency was found to be highest in the armchair SLG (6, 6) for a 50 nm sheet length and lowest in the chiral SLG (16, 4) for a 20 nm sheet length in the bridged condition. When the mass was 0.1 Zg, the frequency for the zigzag SLG (20, 0) was higher in both cases. The results show that the length of the sheet and the various mass values have a significant impact on the dynamic properties. The present research will contribute to the ultra-high frequency nano-resonance applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...