Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 812023 Jan 17.
Article in English | MEDLINE | ID: mdl-38017622

ABSTRACT

Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1ß. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1ß in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Cytokines/metabolism , Lipid Droplets/metabolism , Macrophages , Tuberculosis/microbiology
2.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37140023

ABSTRACT

Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , MicroRNAs , Animals , Mice , Helicobacter pylori/genetics , Reactive Oxygen Species/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/microbiology , Apoptosis , Helicobacter Infections/microbiology , Gastric Mucosa/pathology
3.
Mol Microbiol ; 117(5): 1104-1120, 2022 05.
Article in English | MEDLINE | ID: mdl-35304930

ABSTRACT

The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as the sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid-associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Furthermore, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal trafficking of M. tuberculosis and granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emerges as a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Bacterial Proteins/metabolism , Cholesterol/metabolism , Gene Expression Regulation, Bacterial/genetics , Humans , Lysosomes/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Transcription Factors/metabolism , Tuberculosis/microbiology
4.
Front Microbiol ; 11: 572433, 2020.
Article in English | MEDLINE | ID: mdl-33042081

ABSTRACT

Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis to respond to stress. One such paired TCS is SenX3-RegX3, which responds to phosphate starvation. Here we show that RegX3 is required for M. tuberculosis to withstand low pH, one of the challenges encountered by the bacterium in the host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to launch an appropriate response to acid stress. We show that the whiB3 promoter of M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays (EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates the binding of RegX3-P. The significance of this binding is established by demonstrating that the expression of whiB3 is significantly attenuated under phosphate starvation or under acid stress in the regX3-inactivated mutant, ΔregX3. Green fluorescent protein (GFP)-based reporter assays further confirm the requirement of RegX3 for the activation of the whiB3 promoter. The compromised survival of ΔregX3 under acid stress and its increased trafficking to the lysosomal compartment are reversed upon complementation with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-dependent manner. Finally, using an in vitro granuloma model, we show that granuloma formation is compromised in the absence of regX3, but restored upon complementation with either regX3 or whiB3. Our findings provide insight into an important role of RegX3 in the network that regulates the survival of M. tuberculosis under acid stress similar to that encountered in its intracellular niche. Our results argue strongly in favor of a role of the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.

5.
Cell Microbiol ; 22(3): e13142, 2020 03.
Article in English | MEDLINE | ID: mdl-31709711

ABSTRACT

Infection of macrophages by Mycobacterium tuberculosis elicits an immune response that clears the bacterium. However, the bacterium is able to subvert the innate immune response. Differential expression of transcription factors (TFs) is central to the dynamic balance of this interaction. Among other functions, TFs regulate the production of antibacterial agents such as nitric oxide, pro-inflammatory cytokines and neutral lipids which are stored in lipid bodies (LBs) and favour bacterial survival. Here, we demonstrate that the TF activating transcription factor 3 (ATF3) is upregulated early during infection of macrophages or mice. Depletion of ATF3 enhances mycobacterial survival in macrophages suggesting its host-protective role. ATF3 interacts with chromatin remodelling protein brahma-related gene 1 and both associate with the promoters of interleukin-12p40, interleukin-6 and nitric oxide synthase 2, to activate expression of these genes. Strikingly, ATF3 downregulates LB formation by associating at the promoters of positive regulators of LB formation such as cholesterol 25 hydroxylase and the microRNA-33 locus. ATF3 represses the association of the activating mark, acetyl histone H4 lysine 8 at the promoter of cholesterol 25 hydroxylase. Our study suggests opposing roles of ATF3 in regulation of distinct sets of macrophage genes during infection, converging on a host-protective immune response.


Subject(s)
Activating Transcription Factor 3/immunology , Inflammation/genetics , Lipid Droplets/metabolism , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Activating Transcription Factor 3/genetics , Animals , Cell Survival , Cells, Cultured , Cytokines/metabolism , Early Growth Response Protein 1/metabolism , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions , Humans , Inflammation/immunology , Interleukin-12/genetics , Interleukin-12/metabolism , Mice , Mice, Inbred BALB C , MicroRNAs/metabolism , Promoter Regions, Genetic , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...