Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(4): 186, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509398

ABSTRACT

Imidazoles are a category of azole antifungals that encompass compounds such as ketoconazole, miconazole, esomeprazole, and clotrimazole. In contrast, the triazoles group, which includes fluconazole, voriconazole, and itraconazole, also plays a significant role. The rise of antibiotic resistance in fungal pathogens has evolved into a substantial global public health concern. In this study, two newly synthesized imidazo[1,2-a]pyridine derivative (Probe I and Probe II) molecules were investigated for its antimicrobial potency against of a panel of bacterial (Gram-positive and Gram-negative bacteria) and fungal pathogens. Among the different types of pathogens, we found that Probe II showed excellent antifungal activity against fungal pathogens, based on the preliminary screening the potent molecule further investigated against multidrug-resistance Candida sp. (n = 10) and compared with commercial molecules. In addition, in-silico molecular docking, its dynamics, absorption, distribution, metabolism, excretion and toxicity (ADMET) were analyzed. In this study, the small molecule (Probe II) displayed potent activity only against the Candida spp. including several multidrug-resistant Candida spp. Probe II exhibited minimum inhibitory concentration ranges from 4 to 16 µg/mL and minimum fungicidal concentration in the range 4‒32 µg/mL as the lowest concentration enough to eliminate the Candida spp. The selected molecules inhibit the formation of yeast to mold as well as ergosterol formation by the computational simulation against Sterol 14-alpha demethylase (CYP51) and inhibition of ergosterol biosynthesis by in-vitro model show that the Probe II completely inhibits the formation of ergosterol in yeast cells at 2× MIC. The ADMET analysis Probe II could be moderately toxic to the human being, though the in-vitro toxicity studies will help to understand the real-time toxic level. The novel compound Probe II, which was synthesized during the study, shows promise for development into a new generation of drug treatments aimed at addressing the emerging drug resistance in Candida sp.


Subject(s)
Candida , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Fluconazole/pharmacology , Microbial Sensitivity Tests , Ergosterol
2.
J Fluoresc ; 33(4): 1397-1412, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36705793

ABSTRACT

Imidazo[1,2-a]pyridine derivatives have excellent potential for chelation with transition metal ions. Two new imidazo[1,2-a]pyridine-8-carboxylates were synthesized and characterized by 1H NMR, 13C NMR, HRMS, and single crystal-XRD techniques. Methyl carboxylate (probe 1) turns on fluorescence upon coordination with Zn2+, while sodium carboxylate (probe 2) turns off its fluorescence upon coordination with Co2+ or Cu2+ ions present in aqueous acetonitrile medium. 13C NMR study revealed that the change in metal ion specific binding was due to the involvement of carboxylate anion in complex formation with Co2+ or Cu2+ ions. The carboxylate anion at 8-position also enhanced the sensitivity of detection of probe 2 by an order of magnitude (detection limits: 3.804 × 10-7 M, probe 1/Zn2+; 0.420 × 10-7 M, probe 2/Co2+ and 0.304 × 10-7 M, probe 2/Cu2+). The detection limits of probes 1 and 2 comply well with the World Health Organization (WHO) and US Environmental Protection Agency (US-EPA) guidelines for detection of heavy metal ions present in drinking water and ground water. Both the probes form a 1:1 complex with Zn2+, Co2+ or Cu2+, and the stoichiometry was verified by Job plot and ESI-mass analysis. The sensing mechanism is explained using 13C NMR experiments, ESI-mass analytical data and theoretical DFT calculations. The suitability of probes 1 and 2 for on-site detection and quantitative determination of Zn2+, Co2+ and Cu2+ ions present in biological, environmental and industrial samples is demonstrated. In addition, both 1 and 2 are used for detection of intracellular contamination of Zn2+, Co2+ or Cu2+ ions in onion epidermal cells.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117236, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31200265

ABSTRACT

Synthesis and chelation induced fluorescence emission from two imidazo[1,2-a]pyridine derivatives are described. The nonfluorescent molecule 1 containing N and O donor atoms, achieves coplanarity upon interactions with trivalent cations Al3+, Fe3+ and Cr3+, that favors fluorescence emission. Molecule 2 containing two N donor atoms attains coplanarity upon interaction with the only Zn2+ and becomes fluorescent. Both molecules 1 and 2 form a 1:1 complex with interacting metal ions. Other trivalent metal ions (including Bi3+ and In3+) and common divalent metal ions (including Hg2+ and Cd2+) fail to form any complex with 1 or 2, and they do not interfere in the detection of Zn2+, Al3+, Fe3+ or Cr3+ ions. Noninterference of other metal ions renders 1 and 2 suitable for the detection of fungal cells contaminated with Zn2+, Al3+, Fe3+ or Cr3+ ions.


Subject(s)
Chelating Agents/chemistry , Fluorescent Dyes/chemistry , Metals/analysis , Pyridines/chemistry , Cations/analysis , Microscopy, Fluorescence/methods , Models, Molecular , Optical Imaging/methods , Rhizoctonia/chemistry , Rhizoctonia/cytology , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...