Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119867, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33991815

ABSTRACT

Photodynamic Therapy (PDT) is a powerful technique for the treatment of cancer and non-cancerous diseases. The precise PDT treatment protocol definition must consider the performance difference between in vitroand in vivoapplications. This also occurs in other biological studies, and to partially overcome this difficulty, the simulated body fluids are generally applied as a prior understanding of the particularities of the different systems. However, in PDT these studies are scarce. In this work, we investigated the photoactivation of Erythrosine, a photosensitizer widely used in PDT, in different simulated body fluids. Differences in the photodegradation kinetics, triplet lifetime, and singlet oxygen generation were observed. The results can help to explain and to define PDT application protocols.


Subject(s)
Body Fluids , Photochemotherapy , Erythrosine , Photosensitizing Agents , Singlet Oxygen
2.
Appl Opt ; 60(13): 4029-4033, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983343

ABSTRACT

The mode-mismatched dual-beam thermal lens technique is widely applied in the characterization of optical and thermo-physical properties of solids and liquids. The technique has also been used to investigate transient acoustic waves induced by pulsed laser excitation at the nanosecond time scale. In this paper, we developed a semi-analytical model to describe the transient acoustic wave that allows a fitting procedure to get the physical properties of fluid samples. The method was used to investigate samples with different mixtures of ethanol and water, and quantitative information of piezo-optic coefficient and sound speed are evaluated for the fluid mixtures.

3.
Biomater Investig Dent ; 8(1): 39-47, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33855301

ABSTRACT

OBJECTIVE: To evaluate the early stages of the setting process of chemically activated restorative glass-ionomer cements (GICs). MATERIAL AND METHODS: Five GICs were evaluated (n = 5): Equia Forte (GC), Equia Forte HT (GC), Ketac Universal (3M ESPE), Maxxion R (FGM) and Riva Self Cure (SDI) by Thermography, Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) and Gillmore needle indentation mechanical testing. The FTIR-ATR spectra showed the formation of metal carboxylates within the cements and enabled the stabilization time (ST) to be determined and the thermographic camera measured the temperature field images in the sample. Data were statistically analyzed by ANOVA and Tukey-Kramer (α = 5%). RESULTS: The Gillmore needle test showed that the order of hardening was opposite to the order of ST values determined by FTIR. The results with the thermographic camera showed two stages of temperature variation, which coincided with the evolution of specific infrared bands. The exception was Maxxion R, which showed only a single step change in temperature. CONCLUSION: The early stages of the GIC setting reaction show temperature changes, both endothermic and exothermic, at specific times, confirming the occurrence of individual chemical reactions. The early setting involves reactions other than carboxylate formation.Significance: This study gives further detail of the early stages of the setting of GICs, and past research regarding the setting reaction of GIC.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118877, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32920439

ABSTRACT

This work aimed to investigate and compare the composition and the physicochemical properties of 18 different sources of edible vegetable oils. A systematic study on the correlation between composition and physical properties was performed using Fourier Transform Infrared (FTIR) Spectroscopy and fatty acid chromatographic analysis. Principal component analysis of FTIR spectra is performed to classify edible oils concerning their physical properties. The results demonstrate the potentiality of the method associated with multivariate statistics analysis as powerful, fast, and non-destructive tools for characterization and quality control of edible vegetable oils.


Subject(s)
Plant Oils , Vegetables , Fatty Acids , Food Contamination/analysis , Plant Oils/analysis , Spectroscopy, Fourier Transform Infrared
5.
Appl Spectrosc ; 74(10): 1274-1279, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32672058

ABSTRACT

Laser-induced wavefront distortion is detectable by several techniques based on the photothermal effect. The effect is probed by monitoring the phase shift caused by the bulging of the heated area, the photoelastic effects, and the spatial distribution of the refractive index within the sample and in the fluid surrounding it. A simple analytical solution for the wavefront distortion was only possible for low absorbing materials, with the assumption that the stresses obey either the thin-disk or the long-rod type distributions. Recently, a unified theoretical description for the laser-induced optical path change was proposed to overcome part of this limitation for weakly absorbing materials, regardless of its thickness. In this work, we perform an experimental investigation taking the sample-fluid heat coupling effect into account using the thermal lens technique. The experimental investigation presented here validates the unified model. In addition, we show that the heat-coupling model provides an alternative method to obtain physical properties of non-absorbing fluid by using a reference solid sample.

6.
Appl Opt ; 59(12): 3682-3685, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32400490

ABSTRACT

We use the thermal lens technique in the nanosecond time scale to describe the acoustic wave effect in liquids and the corresponding correlation with the speed of sound in the fluid, volumetric thermal expansion, and piezo-optic coefficient. These physical properties are found to be directly correlated to the anomalous effects observed in the transients at the nanosecond time scale, where acoustic waves dominate the thermal lens signal inducing an oscillating transient. Our results suggest the application of the thermal lens to study the generation and the detection of thermo-acoustic waves in liquids, which makes this method interesting for all-optoacoustic ultrasound detection and imaging.

7.
Appl Spectrosc ; 73(8): 936-944, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31149836

ABSTRACT

Hypericin (Hyp) is a natural compound with interesting photophysical and pharmacological properties, which has been used in photodynamic therapy and photodynamic inactivation of microorganisms. Its synthesis is based on a series of chemical processes that ends with a light-drug interaction by the photoconversion of protohypericin (pHyp) to Hyp. Although this photosensitizer is used in a variety of medical applications, the photophysical and photochemical mechanisms involved in the final step related to the photo production of Hyp are not completely understood at the molecular level. Protohypericin concentration, solvents, light irradiation under different wavelengths, and a sort of variables could play an important role in predicting the yielding of this photoconversion process. Here, we used the high-sensitive and remote measurement characteristics of the time-resolved thermal lens technique to investigate the relation between the light-induced photoconversion rate of pHyp to Hyp and the initial concentration pHyp. The results show a linear dependence of the photoreaction rate with the concentration of pHyp, indicating that the overall reaction process includes steps comprising the formation of distinct intermediate species. We demonstrate the applicability of the thermal lens technique for the photochemical characterization of photosensitive drugs at low concentration levels.


Subject(s)
Perylene/analogs & derivatives , Photosensitizing Agents/chemical synthesis , Anthracenes , Lenses , Perylene/chemical synthesis , Perylene/chemistry , Photochemotherapy
8.
Appl Spectrosc ; 72(2): 251-256, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29148285

ABSTRACT

We applied the open photoacoustic cell method operating at high frequency as an efficient and highly precise tool for the measurement of thermal properties of rubberized two-layer systems. The heat-coupling between the two layers is treated using the analogy between thermal and electrical resistances widely used in heat transfer problems. The thermal resistance between the two layers is considered effective and the problem is decoupled for each layer. Measurements are performed in two-layer samples of aluminum foil coated with layers of rubberized paint with different thicknesses. Thermal diffusivity and thermal conductivity are determined for the paint. The results are retrieved from the thermal resistance model assuming the effective thermal diffusivity of the composite material.

9.
Appl Spectrosc ; 71(5): 970-976, 2017 May.
Article in English | MEDLINE | ID: mdl-27864447

ABSTRACT

Recent improvements in the modeling of photo-induced thermo-optical-mechanical effects have broadened the application of photothermal techniques to a large class of solids and fluids. During laser excitation, changes in optical reflectivity due to temperature variation may affect the photothermal signal. In this study, the influence of the reflectivity change due to heating is analyzed for two pump-probe photothermal techniques, thermal lens and thermal mirror. A linear equation for the temperature dependence of the reflectivity is derived, and the solution is tested using optical properties of semi-transparent and opaque materials. For semi-transparent materials, the influence of the reflectivity change in photothermal signals is less than 0.01%, while for opaque materials it is lower than 3%.

10.
Appl Spectrosc ; 68(7): 777-83, 2014.
Article in English | MEDLINE | ID: mdl-25014843

ABSTRACT

We propose a combined thermal lens and thermal mirror method as concurrent photothermal techniques for the physical characterization of polymers. This combined method is used to investigate polymers as a function of temperature from room temperature up to 170 °C. The method permits a direct determination of thermal diffusivity and thermal conductivity. Additional measurements of specific heat, linear thermal expansion, and temperature-dependent optical path change are also performed. A complete set of thermal, optical, and mechanical properties of polycarbonate and poly (methyl methacrylate) samples are obtained. Methods presented here can be useful for in situ characterization of semitransparent materials, where fast and non-contacting measurements are required.

11.
Nat Commun ; 5: 4363, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24999561

ABSTRACT

The effect of radiation forces at the interface between dielectric materials has been a long-standing debate for over a century. Yet there has been so far only limited experimental verification in complete accordance with the theory. Here we measure the surface deformation at the air-water interface induced by continuous and pulsed laser excitation and match this to rigorous theory of radiation forces. We demonstrate that the experimental results are quantitatively described by the numerical calculations of radiation forces. The Helmholtz force is used for the surface radiation pressure. The resulting surface pressure obtained is consistent with the momentum conservation using the Minkowski momentum density expression assuming that the averaged momentum per photon is given by the Minkowski momentum. Considering the total momentum as a sum of that propagating with the electromagnetic wave and that deposited locally in the material, the Abraham momentum interpretation also appears to be appropriate.

12.
Appl Spectrosc ; 67(10): 1111-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24067567

ABSTRACT

A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

13.
Appl Spectrosc ; 66(12): 1461-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231909

ABSTRACT

A theoretical and experimental study taking sample-fluid heat coupling into account in time-resolved photothermal mirror experiments is presented. Thermoelastic equations were solved to obtain a semi-analytical solution to the phase shift induced by the sample and the surrounding fluid. The solution was used to model the thermal mirror effects and found to be in excellent agreement with the finite element method analysis and experiment. Heat transferred to the air-coupling fluid did not introduce important effects in the phase shift when compared with the solution obtained, without considering heat flux. However, when using water as the fluid, heat coupling led to a significant effect in fluid phase shift. Experimental results using stainless steel in air and water were used to demonstrate the potentiality of the thermal mirror technique to determine the thermal properties of both the sample and the fluid.

14.
Appl Spectrosc ; 65(1): 99-104, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21211159

ABSTRACT

This work presents a theoretical study of a heat transfer effect, taking into account the heat transfer within the heated sample and out to the surrounding medium. The analytical solution is used to model the thermal lens and thermal mirror effects and the results are compared with the finite element analysis (FEA) software solution. The FEA modeling results were found to be in excellent agreement with the analytical solutions. Our results also show that the heat transfer between the sample surface and the air coupling fluid does not introduce an important effect over the induced phase shift in the sample when compared to the solution obtained without considering axial heat flux. On the other hand, the thermal lens created in the air coupling fluid has a significant effect on the predicted time-dependent photothermal signals. When water is used as fluid, the heat coupling leads to a more significant effect in both sample and fluid phase shift. Our results could be used to obtain physical properties of low optical absorption fluids by using a reference solid sample in both thermal lens and thermal mirror experiments.

15.
Opt Lett ; 34(22): 3460-2, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19927177

ABSTRACT

We consider the time dependence of the absorption coefficient due to the photoinduced chemical reaction (PCR) and species diffusion to calculate the temperature rise in the thermal-lens (TL) effect. The TL signal at the detector plane is also calculated. This theoretical approach removes the restriction that the PCR time constant is much greater than the characteristic TL time constant, which was assumed in a previously published model. Hydrocarbon fuel and aqueous Cr(VI) samples are investigated, and quantitative experimental results for the thermal, optical, and PCR properties are obtained. While similar results were obtained for the Cr(VI) solution using the previous and present models, the relative difference between the PCR time constants extracted from the same experimental data for a hydrocarbon fuel sample is found to be more than 220%. This demonstrates the significant difference of the two models.

16.
Opt Express ; 16(16): 12214-9, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18679498

ABSTRACT

A theoretical model was developed for time-resolved thermal mirror spectroscopy under top-hat cw laser excitation that induced a nanoscale surface displacement of a low absorption sample. An additional phase shift to the electrical field of a TEM(00) probe beam reflected from the surface displacement was derived, and Fresnel diffraction theory was used to calculate the propagation of the probe beam. With the theory, optical and thermal properties of three glasses were measured, and found to be consistent with literature values. With a top-hat excitation, an experimental apparatus was developed for either a single thermal mirror or a single thermal lens measurement. Furthermore, the apparatus was used for concurrent measurements of thermal mirror and thermal lens. More physical properties could be measured using the concurrent measurements.


Subject(s)
Computer-Aided Design , Lasers , Lenses , Models, Theoretical , Spectrum Analysis/instrumentation , Thermography/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis
17.
Opt Lett ; 33(13): 1464-6, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18594666

ABSTRACT

Thermal lens spectroscopy is a highly sensitive and versatile photothermal technique for material analysis, providing optical and thermal properties. To use less expensive multimode non-Gaussian lasers for quantitative analysis of low-absorption materials, this Letter presents a theoretical model for time-resolved mode-mismatched thermal lens spectroscopy induced by a cw laser with a top-hat profile. The temperature profile in a sample was calculated, and the intensity of the probe beam center at the detector plane was also derived using the Fresnel diffraction theory. Experimental validation was performed with glass samples, and the results were found well consistent with literature values of the thermo-optical properties of the samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...