Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Foods ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048234

ABSTRACT

This research was aimed to assess the distribution of calcium, phosphorus and magnesium within the casein micelles of yak milk. To this aim, nine bulk yak milk samples (Y-milk), collected in three yak farms located in the Chinese province of Qinghai, were compared to nine bulk cow milk samples used as a reference. A quite similar content of colloidal calcium (0.80 vs. 0.77 mmol/g of casein; p > 0.05), a higher content of magnesium (0.05 vs. 0.04 mmol/g of casein; p ≤ 0.01) and a lower content of colloidal phosphorus (0.48 vs. 0.56 mmol/g of casein; p ≤ 0.01) between yak and cow casein micelles were found. Moreover, the yak casein micelles showed a lower value of prosthetic phosphorus (0.20 vs. 0.26 mmol/g of casein; p ≤ 0.05) compared to the cow micelles. The lower values of colloidal and prosthetic phosphorus in yak casein micelles suggest that the yak casein is less phosphorylated than the cow one.

2.
Anim Biosci ; 36(1): 132-143, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35798045

ABSTRACT

OBJECTIVE: The aim was to study the influence of cooling milk at 9°C at the farm versus keeping it at 20°C on Parmigiano Reggiano cheese lipolysis. METHODS: A total of six cheesemaking trials (3 in winter and 3 in summer) were performed. In each trial, milk was divided continuously into two identical aliquots, one of which was kept at 9°C (MC9) and the other at 20°C (MC20). For each trial and milk temperature, vat milk (V-milk) and the resulting 21 month ripened cheese were analysed. RESULTS: Fat and dry matter and fat/casein ratio were lower in MC9 V-milk (p≤0.05) than in MC20. Total bacteria, mesophilic lactic acid and psychrotrophic and lipolytic bacteria showed significant differences (p≤0.05) between the two V-milks. Regarding cheese, fat content resulted lower and crude protein higher (p≤0.05) both in outer (OZ) and in inner zone (IZ) of the MC9 cheese wheels. Concerning total fatty acids, the MC9 OZ had a lower concentration of butyric, capric (p≤0.05) and medium chain fatty acids (p≤0.05), while the MC9 IZ had lower content of butyric (p≤0.05), caproic (p≤0.01) and short chain fatty acids (p≤0.05). The levels of short chain and medium chain free fatty acids (p≤0.05) were lower and that of long chain fatty acids (p≤0.05) was higher in MC9 OZ cheese. The principal component analysis of total and free fatty acids resulted in a clear separation among samples by seasons, whereas slight differences were observed between the two different milk temperatures. CONCLUSION: Storing milk at 9°C at the herd affects the chemical composition of Parmigiano Reggiano, with repercussion on lipolysis. However, the changes are not very relevant, and since the cheese can present a high variability among the different cheese factories, such changes should be considered within the "normal variations" of Parmigiano Reggiano chemical characteristics.

3.
Front Vet Sci ; 9: 1012251, 2022.
Article in English | MEDLINE | ID: mdl-36311669

ABSTRACT

The composition of raw milk is of major importance for dairy products, especially fat, protein, and casein (CN) contents, which are used worldwide in breeding programs for dairy species because of their role in human nutrition and in determining cheese yield (%CY). The aim of the study was to develop formulas based on detailed milk composition to disentangle the role of each milk component on %CY traits. To this end, 1,271 individual milk samples (1.5 L/cow) from Brown Swiss cows were processed according to a laboratory model cheese-making procedure. Fresh %CY (%CYCURD), total solids and water retained in the fresh cheese (%CYSOLIDS and %CYWATER), and 60-days ripened cheese (%CYRIPENED) were the reference traits and were used as response variables. Training-testing linear regression modeling was performed: 80% of observations were randomly assigned to the training set, 20% to the validation set, and the procedure was repeated 10 times. Four groups of predictive equations were identified, in which different combinations of predictors were tested separately to predict %CY traits: (i) basic composition, i.e., fat, protein, and CN, tested individually and in combination; (ii) udder health indicators (UHI), i.e., fat + protein or CN + lactose and/or somatic cell score (SCS); (iii) detailed protein profile, i.e., fat + protein fractions [CN fractions, whey proteins, and nonprotein nitrogen (NPN) compounds]; (iv) detailed protein profile + UHI, i.e., fat + protein fractions + NPN compounds and/or UHI. Aside from the positive effect of fat, protein, and total casein on %CY, our results allowed us to disentangle the role of each casein fraction and whey protein, confirming the central role of ß-CN and κ-CN, but also showing α-lactalbumin (α-LA) to have a favorable effect, and ß-lactoglobulin (ß-LG) a negative effect. Replacing protein or casein with individual milk protein and NPN fractions in the statistical models appreciably increased the validation accuracy of the equations. The cheese industry would benefit from an improvement, through genetic selection, of traits related to cheese yield and this study offers new insights into the quantification of the influence of milk components in composite selection indices with the aim of directly enhancing cheese production.

4.
Animals (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34679856

ABSTRACT

Parmigiano Reggiano is a hard PDO cheese made from bovine raw milk, whose microbiological characteristics have important repercussions on cheese quality. According to the EU official production protocol, milk temperature at the farm must not drop below 18 °C. The present research aimed to study the effect of cooling milk at the farm at 9 °C on the characteristics of milk and on the cheesemaking process and losses during manufacture. Six cheesemaking trials were performed in two different dairies. In each of them, two cheesemakings were made in parallel: one with milk kept at 9 °C (TM9) and the other with milk kept at 20 °C (TM20). TM9 milk, in comparison with TM20, showed after the creaming process a significant reduction not only of total bacterial count but also of psychrotrophic and lipolytic bacteria. At the same time, TM9 milk showed a higher creaming capacity and, consequently, a lower fat content than TM20. TM9 vat milk had worst coagulation properties than TM20, which caused slightly higher loss of fat and curd fines into the whey. Nevertheless, these changes were too small to influence the efficiency of the cheesemaking process; conversely, maintaining milk at the farm at 9 °C led to a reduction of the number of spoilage bacteria.

5.
Sci Rep ; 11(1): 12601, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131265

ABSTRACT

Dairy cattle breeds have been exposed to intense artificial selection for milk production traits over the last fifty years. In Italy, where over 80% of milk is processed into cheese, selection has also focused on cheese-making traits. Due to a deep-rooted tradition in cheese-making, currently fifty Italian cheeses are marked with the Protected Designation of Origin (PDO) label as they proved traditional land of origin and procedures for milk transformation. This study aimed to explore from a genetic point of view if the presence of such diverse productive contexts in Italy have shaped in a different manner the genome of animals originally belonging to a same breed. We analyzed high density genotype data from 1000 Italian Holstein cows born between 2014 and 2018. Those animals were either farmed in one of four Italian PDO consortia or used for drinkable milk production only. Runs of Homozygosity, Bayesian Information Criterion and Discriminant Analysis of Principal Components were used to evaluate potential signs of genetic divergence within the breed. We showed that the analyzed Italian Holstein cows have genomic inbreeding level above 5% in all subgroups, reflecting the presence of ongoing artificial selection in the breed. Our study provided a comprehensive representation of the genetic structure of the Italian Holstein breed, highlighting the presence of potential genetic subgroups due to divergent dairy farming systems. This study can be used to further investigate genetic variants underlying adaptation traits in these subgroups, which in turn might be used to design more specialized breeding programs.


Subject(s)
Cheese , Genome/genetics , Lactation/genetics , Milk/metabolism , Animals , Bayes Theorem , Cattle , Female , Genetic Drift , Genotype , Humans , Italy , Milk/chemistry , Phenotype , Silage
6.
J Dairy Sci ; 104(8): 8439-8453, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34053760

ABSTRACT

Natural variations in milk minerals, their relationships, and their associations with the coagulation process and cheese-making traits present an opportunity for the differentiation of milk destined for high-quality natural products, such as traditional specialties or Protected Designation of Origin (PDO) cheeses. The aim of this study was to quantify the effects of the native contents of Ca, P, Na, K, and Mg on 18 traits describing traditional milk coagulation properties (MCP), curd firming over time (CFt) equation parameters, cheese yield (CY) measures, and nutrient recoveries in the curd (REC) using models that either included or omitted the simultaneous effects of milk fat and casein contents. The results showed that, by including milk fat and casein and the minerals in the statistical model, we were able to determine the specific effects of each mineral on coagulation and cheese-making efficiency. In general, about two-thirds of the apparent effects of the minerals on MCP and the CFt equation parameters are actually mediated by their association with milk composition, especially casein content, whereas only one-third of the effects are direct and independent of milk composition. In the case of cheese-making traits, the effects of the minerals were mediated only negligibly by their association with milk composition. High Ca content had a positive effect on the coagulation pattern and cheese-making traits, favoring water retention in the curd in particular. Phosphorus positively affected the cheese-making traits in that it was associated with an increase in CY in terms of curd solids, and in all the nutrient recovery traits. However, a very high P content in milk was associated with lower fat recovery in the curd. The variation in the Na content in milk only mildly affected coagulation, whereas with regard to cheese-making, protein recovery was negatively associated with high concentrations of this mineral. Potassium seemed not to be actively involved in coagulation and the cheese-making process. Magnesium content tended to slow coagulation and reduce CY measures. Further studies on the relationships of minerals with casein and protein fractions could deepen our knowledge of the role of all minerals in coagulation and the cheese-making process.


Subject(s)
Cheese , Animals , Caseins , Cattle , Milk , Minerals , Phenotype
7.
Animals (Basel) ; 11(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808753

ABSTRACT

Parmigiano Reggiano is a Protected Designation of Origin (PDO) cheese whose official production protocol provides that milk cannot be stored at less than 18 °C at the farm. The possibility of refrigerating milk at the farm is highly debated, since it should allow for the limiting of bacterial growth, thus improving the quality of the cheese. The present research aimed to study the influence of storing the milk at 9 °C on the chemical composition and proteolysis during the ripening of Parmigiano Reggiano cheese. The experimentation considered six cheese-making trials, in which both evening and morning milks were subdivided into two parts that were maintained at 9 and 20 °C. After Parmigiano Reggiano cheese-making, one of the twin wheels obtained was analyzed after 21 months of ripening. From each cheese, two different samples were taken, one from the inner zone, and the other from the outer zone. The results of the chemical analyses evidenced that milk storage at 9 °C significantly (p ≤ 0.05) influenced fat, crude protein, soluble nitrogen and peptone nitrogen contents. Nevertheless, the differences observed with respect to the cheese obtained with milk stored under standard condition were very small and should be considered within the "normal variations" of Parmigiano Reggiano chemical characteristics.

8.
Animals (Basel) ; 10(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752195

ABSTRACT

Milk from different cattle breeds can present different casein and fat contents, which are reflected in different cheese yields (CY). However, CY is also related to some breed-related molecular characteristics. The aim of the present work was to quantify the effect of these characteristics by comparing a series of Parmigiano Reggiano (PR) cheese-making trials made with milks from Italian Brown (IB) and Italian Friesian (IF) cattle herds. Twelve trials were carried out in a cheese factory in one year (one trial per month), each one consisting of four vats processed in parallel: three vats contained milk from three different IF cattle herds (IF1, IF2 and IF3) and one contained milk from a single IB cattle herd. A 24-h CY prediction formula was developed with data from IF1, IF2 and IF3 trials (calibration) and successively validated by applying it to 12 PR trials made with IF milk in six different cheese factories (external validation). The predicted values of 24-h CY were no different to the actual ones in both calibration and external validation. Finally, the formula was tested on trials made with IB milk. In this case, the predicted values were lower than the actual ones. The quantity of IF milk casein necessary to give the same CY of IB milk was 0.20 g/100 g.

9.
Food Technol Biotechnol ; 58(1): 91-97, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32684793

ABSTRACT

The aim of the present study is to investigate the effect of κ-casein B content in milk on the yield of high-moisture mozzarella cheese. The study was carried out by monitoring the production of eight mozzarella cheese batches at four cheese making factories. At each factory, two cheese making trials were performed in parallel: one using bulk milk from Italian Brown cattle and the other using bulk milk from Italian Friesian cattle. The average κ-casein B content was 0.04 g per 100 g in the Italian Friesian cows' milk, whereas it was four time higher in the Italian Brown cows' milk, reaching values of 0.16 g per 100 g. Both the κ-casein content and κ-casein B to casein ratio were positively correlated with actual cheese yield. Both parameters showed correlation coefficient values over 0.9, higher than for any other protein fraction. The influence of the level of κ-casein on the increase of the yield is probably due to smaller and more homogeneous micelles, with more efficient rennet coagulation. Consequently, milk with higher κ-casein B content produces a more elastic curd that withstands better the technological treatments and limits losses during curd mincing and stretching. In conclusion, the Italian Brown cows' milk used, characterized by higher κ-casein content than the Italian Friesian's one, allowed a yield increase of about 2.65%, which is a very relevant result for both farms and cheese making factories.

10.
J Dairy Sci ; 103(8): 6843-6857, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32475671

ABSTRACT

The yield, flavor, and texture of ripened cheese result from numerous interrelated microbiological, biochemical, and physical reactions that take place during ripening. The aims of the present study were to propose a 2-compartment first-order kinetic model of cheese weight loss over the ripening period; to test the variation in new informative phenotypes describing this process; and to assess the effects on these traits of dairy farming system, individual farms within dairy system, animal factors, and milk composition. A total of 1,211 model cheeses were produced in the laboratory using individual 1.5-L milk samples from Brown Swiss cows reared on 83 farms located in Trento Province. During ripening (60 d; temperature 15°C, relative humidity 85%), the weight of all model cheeses was measured, and cheese yield (cheese weight/processed milk weight, %CY) was calculated at 7 intervals from cheese-making (0, 1, 7, 14, 28, 42, and 60 d). Using these measures, a 2-compartment first-order kinetic model (3-parameter equation) was developed for modeling %CY during the ripening period, as follows: [Formula: see text] , where %CYt is the %CY at ripening time t; %CYi and %CYf are the modeled %CY traits at time 0 d (%CYi = initial %CY) and at the end of a ripening period sufficient to reach a constant wheel weight (%CYf = final %CY after 60 d ripening in the case of small model cheeses); kCY is the instant rate constant for cheese weight loss (%/d). Cheese weight and protein and fat losses were calculated as the % difference between the model cheeses at 0 and after 60 d of ripening. The variation in cheese pH was calculated as the % difference between pH at 0 and after 60 d. Dairy system, individual herd within dairy system, and the cow's parity and lactation stage (tested with a linear mixed model) strongly affected almost all the traits collected during model cheese ripening. Milk fat, protein, lactose, pH, and somatic cell score also greatly affected almost all the traits, although kCY was affected only by milk protein. After including milk composition in the linear mixed model, the importance of all the herd and animal sources of variation was greatly reduced for all traits. The proposed model and novel traits could be tested, first, with the aim of establishing new monitoring procedures enabling the dairy industry to improve milk quality-based payment systems at the herd level and, second, with a view to exploring possible genetic improvements to dairy cow populations.


Subject(s)
Cheese , Dairying , Lactation , Milk , Parity , Animals , Cattle , Cattle Diseases/metabolism , Dairying/methods , Female , Food Handling , Milk/chemistry , Milk Proteins/analysis , Phenotype , Pregnancy , Taste
11.
Foods ; 9(4)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224946

ABSTRACT

An important problem in mountain areas is the abandonment of pasture. This trend can be combated by the valorisation of typical dairy products, such as "Formaggella della Valle di Scalve", a semi-cooked traditional cheese made from whole milk in a mountain area in Italy. The aim of the present research was to compare the fatty acid (FA) profile and the sensory properties of this cheese as manufactured under different conditions: i) from the milk of cows grazing on mountain or valley pasture or fed indoors; ii) from the milk of cows fed hay or fed silage. In the first case, five cheesemaking trials were conducted during two years for each of the following situations: mountain pasture (A); pasture at the bottom of the valley (P) (about 1000m asl); stall (S). In the second case, three cheesemaking trials were conducted for each of the following situations: cows fed silage (I); cows fed hay (F). S cheese was richer in medium-chain FAs, while long-chain FAs were higher in P and A cheeses. On the other hand, long chain fatty acids (LCFA) were more abundant in P and A cheeses than in S. In general, MUFA, PUFA and, consequently, total unsaturated FA (UFA), were significantly higher in the P and A cheeses than S (UFA: 36.55 and 38.34, respectively, vs 31.13; p < 0.001), while SFA showed higher values in S (68.85 vs 63.41 and 61.68 in P and A, respectively; p < 0.001). Conjugated linoleic acid isomers (CLA) were more represented in the P and A samples (1.86 in P and 1.52 in A, vs 0.80 in S; p < 0.001); Omega 3 fatty acids, and in particular α-linolenic acid, were more abundant in P than in S cheese. In winter, the I sample (silage) presented higher percentages of myristic (C14), myristoleic (C14:1) and omega 6 acids, whereas F cheese (hay) contained higher concentrations of CLA. The triangular test of sensory analysis showed that, in general, F cheeses were judged as "sweeter" than I, with aromatic profiles characterized by higher content of 2- butanol and ethyl capronate.

12.
Foods ; 9(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085635

ABSTRACT

The mammary gland inflammation process is responsible for an increased number of somatic cells in milk, and transfers into the milk of some blood components; this causes alterations in the chemical composition and physico-chemical properties of milk. For this reason, somatic cell count (SCC) is one of the most important parameters of milk quality; therefore, European Union (EU) Regulation no 853/2004 has stated that it must not exceed the limit value of 400,000 cells/mL. The research aimed to compare chemical composition, cheese yield, and cheesemaking losses of two groups of vat milks used for Parmigiano Reggiano production, characterized by different SCC levels. During two years, ten cheesemaking trials were performed in ten different cheese factories. In each trial, two cheesemaking processes were conducted in parallel: one with low SCC milk (below 400,000 cells/mL; Low Cell Count (LCC)) and the other with high SCC milk (400,000-1,000,000 cells/mL; High Cell Count (HCC)). For each trial, vat milk and cooked whey were analyzed; after 24 months of ripening, cheeses were weighed to calculate cheese yield. The HCC group had lower casein content (2.43 vs. 2.57 g/100 g; p ≤ 0.05) and number (77.03% vs. 77.80%; p ≤ 0.05), lower phosphorus (88.37 vs. 92.46 mg/100g; p ≤ 0.05) and titratable acidity (3.16 vs. 3.34 °SH/50 mL; p ≤ 0.05) compared to LCC. However, chloride (111.88 vs. 104.12 mg/100 g; p ≤ 0.05) and pH (6.77 vs. 6.71; p ≤ 0.05) were higher. Fat losses during cheesemaking were higher (20.16 vs. 16.13%). After 24 months of ripening, cheese yield was 8.79% lower for HCC milk than LCC (6.74 vs. 7.39 kg/100 kg; p ≤ 0.05).

13.
Crit Rev Food Sci Nutr ; 60(21): 3705-3723, 2020.
Article in English | MEDLINE | ID: mdl-32033519

ABSTRACT

The genetic variant A1 of bovine ß-casein (ß-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide ß-Cn f(60-66), named ß-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for µ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of ß-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of ß-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of ß-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "ß-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for ß-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.


Subject(s)
Endorphins , Animals , Caseins , Cattle , Humans , Milk , Peptide Fragments
14.
Animals (Basel) ; 9(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861194

ABSTRACT

Donkey milk is increasingly being proposed as a natural alternative milk for various categories of consumers, especially infants and the elderly population. However, its potential production, gross, and mineral composition have not been deeply investigated yet. Sixty-two individual milk samples were collected monthly from nine Ragusano donkeys reared in a specialized dairy farm. Milk yield as well as chemical and mineral composition, including macro and micro elements, were investigated over an entire lactation, from the second to the ninth month of milking. Milk yield averaged 1.64 kg/day, which highlights good aptitude of the Ragusano breed for the production of milk. Gross composition was characterized by low content of dry matter (8.19%), a high amount of lactose (6.07%), low protein (1.34%), and very low-fat content (0.16%). Whey proteins represented 58% of the total protein, and proteose-peptones accounted for 0.35 ± 0.07 g per 100 g. Total ash content was 0.36 g per 100 g and represented 4.40% of the dry matter. The most abundant element was K, which was followed by Ca, Na, and P. As expected, the micro elements Fe, Zn, and Cu were found in low amounts or in traces. Dry matter, fat, whey proteins. The total ash, Ca, P, Mg, and mineral ratios were significantly affected by the lactation stage.

15.
Foods ; 8(8)2019 Aug 03.
Article in English | MEDLINE | ID: mdl-31382575

ABSTRACT

The assessment of the efficiency of the cheese-making process (ECMP) is crucial for the profitability of cheese-factories. A simple way to estimate the ECMP is the measure of the estimated cheese-making losses (ECL), expressed by the ratio between the concentration of each constituent in the residual whey and in the processed milk. The aim of this research was to evaluate the influence of the season and cheese factory on the efficiency of the cheese-making process in Parmigiano Reggiano cheese manufacture. The study followed the production of 288 Parmigiano Reggiano cheese on 12 batches in three commercial cheese factories. For each batch, samples of the processed milk and whey were collected. Protein, casein, and fat ECL resulted in an average of 27.01%, 0.72%, and 16.93%, respectively. Both milk crude protein and casein contents were negatively correlated with protein ECL, r = -0.141 (p ≤ 0.05), and r = -0.223 (p ≤ 0.001), respectively. The same parameters resulted in a negative correlation with casein ECL (p ≤ 0.001) (r = -0.227 and -0.212, respectively). Moreover, fat ECL was correlated with worse milk coagulation properties and negatively correlated with casein content (r = -0.120; p ≤ 0.05). In conclusion, ECLs depend on both milk characteristics and season.

16.
J Dairy Sci ; 102(4): 2903-2917, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30772026

ABSTRACT

The aim of this study was to assess the role of milk protein fractions in the coagulation, curd firming, and syneresis of bovine milk. Analyses were performed on 1,271 individual milk samples from Brown Swiss cows reared in 85 herds classified into 4 types of farming systems, from the very traditional (tied cows, feed manually distributed, summer highland pasture) to the most modern (loose cows, use of total mixed rations with or without silage). Fractions αS1-casein (CN), αS2-CN, ß-CN, κ-CN, ß-lactoglobulin (LG), and α-lactalbumin (LA) and genotypes at CSN2, CSN3, and BLG were obtained by reversed-phase HPLC. The following milk coagulation properties were measured with a lactodynamograph, with the testing time extended to 60 min: rennet coagulation time (RCT, min), curd firming time (min), and curd firmness at 30 and 45 min (mm). All the curd firmness measures recorded over time (total of 240 observations/sample) were used in a 4-parameter nonlinear model to obtain parameters of coagulation, curd firming, and syneresis: RCT estimated from the equation (min), asymptotic potential curd firmness (mm), the curd firming and syneresis instant rate constants (%/min), and the maximum curd firmness value (CFmax, mm) and the time taken to reach it (min). All the aforementioned traits were analyzed with 2 linear mixed models, which tested the effects of the protein fractions expressed in different ways: in the first, quantitative model, each protein fraction was expressed as content in milk; in the second, qualitative model, each protein fraction was expressed as a percentage of total casein content. Besides proteins, additional nuisance parameters were herd (included as a random effect), daily milk production (only for the quantitative model), casein content (only for the qualitative model), dairy system, parity, days in milk, the pendulum of the lactodynamograph, and the CSN2, CSN3, and BLG genotypes. Both αS1-CN and ß-CN showed a clear and favorable effect on CFmax, where the former effect was almost double the latter. Milk coagulation ability was favorably affected by κ-CN, which reduced both the RCT and RCT estimated from the equation, increased the curd firming and syneresis instant rate constants, and allowed a higher CFmax to be reached. In contrast, αS2-CN delayed gelation time and ß-LG worsened curd firming, both resulting in a low CFmax. The results of this study suggest that modification of the relative contents of specific protein fractions can have an enormous effect on the technological behavior of bovine milk.


Subject(s)
Cheese/analysis , Chymosin , Milk Proteins/analysis , Milk/chemistry , Animal Husbandry , Animals , Caseins , Cattle , Female , Lactoglobulins
17.
J Dairy Sci ; 101(10): 8788-8804, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30122415

ABSTRACT

The aim of this study was to assess the influence of the amounts of the αS1-, αS2-, ß-, and κ-casein (CN) and the α-lactalbumin and ß-lactoglobulin protein fractions on the efficiency of the cheese-making process independently of their genetic polymorphisms. The study was carried out on milk samples from 1,271 Brown Swiss cows from 85 herds classified into 4 categories according to management, feeding, and housing characteristics (traditional and modern systems). To assess the efficiency of the cheese-making process, we processed the milk samples according to a laboratory cheese-making procedure (1,500 mL/sample) and obtained the following measures: (1) 3 percentage cheese yields (%CYcurd, %CYsolids, %CYwater), (2) 2 daily cheese yields obtained by multiplying %CY (curd and total solids) by daily milk yields (dCYcurd, dCYsolids), (3) 4 measures of nutrient recovery in the curd (RECfat, RECprotein, RECsolids, RECenergy), and (4) 2 measures of cheese-making efficiency in terms of the ratio between the observed and theoretical %CY (Ef-%CYcurd, Ef-%CYsolids). All the aforementioned traits were analyzed by fitting 2 linear mixed models with protein fractions as fixed effects expressed as percentage in the milk (model M-%milk) and as percentage of the total casein content (model M-%cas) together with the effects of total casein content (only in model M-%cas), daily milk yield (only in model M-%milk; not for dCY traits), dairy system, herd (random effect), days in milk, parity, and vat. The efficiency of overall cheese yield (Ef-%CYcurd) was mostly positively associated with ß-CN content in the milk, whereas Ef-%CYsolids was greater with higher amounts of κ-CN and αS1-CN (M-%milk) due to the strong influence of both fractions on the recovery rate of milk components in the curd (fat and total solids, protein with αS1-CN only) when expressed as percentage of milk and of total casein; only ß-CN was more important for RECprotein. In contrast, we found ß-lactoglobulin to be highly negatively related to all the traits related to the cheese-making process and to the daily cheese yield per cow, whereas α-lactalbumin was positively associated with the latter traits. Additional research on this topic is needed, with particular focus on the genetic and genomic aspects of the role of protein fractions in the cheese-making process and on the associations between genetic polymorphisms in milk protein and milk nutrient recovery in the curd.


Subject(s)
Cheese , Food Handling/methods , Milk Proteins/analysis , Milk/chemistry , Animals , Caseins , Cattle , Female , Phenotype
19.
Food Technol Biotechnol ; 55(3): 277-289, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29089844

ABSTRACT

Italian hard cooked types of cheese, like Parmigiano Reggiano and Grana Padano, are characterised by positive nutritional qualities. In fact, they contain substances that have particular biological activities, and therefore they can be fully considered, according to the definition given by the European Unit, as 'functional' foods. This short review concisely describes these components and the beneficial effects related to their activities. The description of the biologically active components has been organised in the following paragraphs: protein and peptides, fat and lipids, carbohydrates and prebiotics, probiotic bacteria, vitamins, mineral salts, and components of dairy products active in disease prevention. In particular, several known bioactive peptides were found in Parmigiano Reggiano cheese samples: for example, phosphopeptides, which are known for their mineral-binding capacity and vehiculation activity, peptides with immunomodulatory activity, and angiotensin-converting enzyme-inhibitory peptides with anti-hypertensive effects. Among lipids, the role of conjugated linoleic acid and other fatty acids present in these cheese types was taken into consideration. The presence of oligosaccharides with prebiotic properties and probiotic bacteria was also described. Finally, particular emphasis was given to highly available calcium and its impact on bone health.

20.
J Dairy Res ; 82(2): 222-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25684247

ABSTRACT

The aim of this study was to determine the influence of the somatic cell content (SCC) of milk on Parmigiano-Reggiano cheese yield, produced in commercial cheese factories under field conditions. The study was carried out following the production of 56 batches of Parmigiano-Reggiano in 13 commercial cheese factories by processing milk collected from Italian Friesian cattle herds. The vat-milk (V-milk) used for making each cheese batch was obtained by mixing evening milk (partially skimmed following spontaneous separation of fat overnight, natural creaming) and morning milk. The batches of cheese produced were divided into 5 classes according to the SCC value of the evening milk determined prior to natural creaming (class 1, from 0 to 200,000; 2, 201,000-300,000; 3, 301,000-400,000; 4, 401,000-500,000; 5, over 501,000 cells/ml). The cheese yield was calculated as the amount of 24-h cheese, expressed in kilograms, obtained from 100 kg of V-milk (24 h ACY). The values of fat, crude protein, true protein, casein and 24 h ACY of V-milk were negatively correlated with the somatic cell score (SCS) of the evening milk. Conversely, a positive correlation was observed between chloride and SCS. Fat, protein fractions (crude protein, casein and whey proteins), P and titratable acidity of V-milk were positively correlated with its 24 h ACY, while chloride, pH and SCS showed a negative correlation. A significant drop in 24 h ACY was observed in classes 3, 4 and 5, therefore when the SCC of the evening milk exceeded 300,000 cells/ml. Finally a lower recovery of milk fat in cheese was observed as SCC of evening milk increase.


Subject(s)
Cattle , Cheese/analysis , Milk/cytology , Animals , Female , Food Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...