Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731582

ABSTRACT

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catechin , Combretum , Microbial Sensitivity Tests , Plant Extracts , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catechin/pharmacology , Catechin/chemistry , Combretum/chemistry , Plant Leaves/chemistry , Sugars , Humans
2.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542161

ABSTRACT

Photodynamic therapy (PDT) relies on the combined action of a photosensitizer (PS), light at an appropriate wavelength, and oxygen, to produce reactive oxygen species (ROS) that lead to cell death. However, this therapeutic modality presents some limitations, such as the poor water solubility of PSs and their limited selectivity. To overcome these problems, research has exploited nanoparticles (NPs). This project aimed to synthesize a PS, belonging to the BODIPY family, covalently link it to two NPs that differ in their lipophilic character, and then evaluate their photodynamic activity on SKOV3 and MCF7 tumor cell lines. Physicochemical analyses demonstrated that both NPs are suitable for PDT, as they are resistant to photobleaching and have good singlet oxygen (1O2) production. In vitro biological analyses showed that BODIPY has greater photodynamic activity in the free form than its NP-bounded counterpart, probably due to greater cellular uptake. To evaluate the main mechanisms involved in PDT-induced cell death, flow cytometric analyses were performed and showed that free BODIPY mainly induced necrosis, while once bound to NP, it seemed to prefer apoptosis. A scratch wound healing test indicated that all compounds partially inhibited cellular migration of SKOV3 cells.


Subject(s)
Nanoparticles , Photochemotherapy , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemistry , Cell Line, Tumor , Oxygen
3.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542921

ABSTRACT

Photodynamic therapy (PDT) is a minimally invasive treatment that uses the combination of a photosensitizing agent (PS) and light to selectively target solid tumors, as well as several non-neoplastic proliferating cell diseases. After systemic administration, PSs are activated by localized irradiation with visible light; in the presence of adequate concentrations of molecular oxygen, this causes the formation of reactive oxygen species (ROS) and subsequent tissue damage. In this study, two series of tetrakis(N-alkylpyridinium-4-yl)porphyrins were synthesized, differing in the presence or absence of a zinc ion in the tetrapyrrole nucleus, as well as in the N-alkyl chain length (from one to twelve carbon atoms). The compounds were chemically characterized, and their effect on cell viability was evaluated using a panel of three tumor cell lines to determine a possible relationship between photodynamic activity and Zn presence/alkyl chain length. The types of cell death mechanisms involved in the effect of the various PSs were also evaluated. The obtained results indicate that the most effective porphyrin is the Zn-porphyrin, with a pendant made up of eight carbon atoms (Zn-C8).


Subject(s)
Photochemotherapy , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/chemistry , Light , Carbon
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901769

ABSTRACT

In this work, two compounds belonging to the BODIPY family, and previously investigated for their photosensitizing properties, have been bound to the amino-pendant groups of three random copolymers, with different amounts of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the backbone. The P(MMA-ran-DMAEMA) copolymers have inherently bactericidal activity, due to the amino groups of DMAEMA and to the quaternized nitrogens bounded to BODIPY. Systems consisting of filter paper discs coated with copolymers conjugated to BODIPY were tested on two model microorganisms, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). On solid medium, irradiation with green light induced an antimicrobial effect, visible as a clear inhibition area around the coated disks. The system based on the copolymer with 43% DMAEMA and circa 0.70 wt/wt% of BODIPY was the most efficient in both bacterial species, and a selectivity for the Gram-positive model was observed, independently of the conjugated BODIPY. A residual antimicrobial activity was also observed after dark incubation, attributed to the inherently bactericidal properties of copolymers.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Escherichia coli , Methylmethacrylate , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Methacrylates/pharmacology , Polymers/pharmacology , Anti-Bacterial Agents/pharmacology , Photosensitizing Agents/pharmacology
5.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834543

ABSTRACT

In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.


Subject(s)
Moths , Photochemotherapy , Porphyrins , Animals , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Porphyrins/chemistry , Models, Animal , Larva
6.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077597

ABSTRACT

Over the past 30 years, photodynamic therapy (PDT) has shown great development. In the clinical setting the few approved molecules belong almost exclusively to the porphyrin family; but in the scientific field, in recent years many researchers have been interested in other families of photosensitizers, among which BODIPY has shown particular interest. BODIPY is the acronym for 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene, and is a family of molecules well-known for their properties in the field of imaging. In order for these molecules to be used in PDT, a structural modification is necessary which involves the introduction of heavy atoms, such as bromine and iodine, in the beta positions of the pyrrole ring; this change favors the intersystem crossing, and increases the 1O2 yield. This mini review focused on a series of structural changes made to BODIPYs to further increase 1O2 production and bioavailability by improving cell targeting or photoactivity efficiency.


Subject(s)
Photochemotherapy , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Fluorescent Dyes/chemistry
7.
Cancers (Basel) ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36612089

ABSTRACT

Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.

8.
Photochem Photobiol Sci ; 20(8): 1011-1025, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34260053

ABSTRACT

Photodynamic therapy involves the concomitant action of three components, light with an appropriate wavelength, molecular oxygen, and a molecule, able to absorb an electromagnetic radiation, called photosensitizer (PS). A fundamental aspect is the bioavailability of the PS that is directly related to some physicochemical properties of the PS itself as it should feature a certain degree of lipophilicity to easily cross the cell membrane, however, at the same time, should be sufficiently water-soluble to navigate in the bloodstream. Consequently, the use of a system for drug delivery becomes essential when photosensitizers with a high degree of lipophilicity are considered. In this work, we present three different drug delivery systems, microemulsions, emulsions and liposomes all capable of carrying a PS belonging to the porphyrin family: the tetraphenyl porphyrin (TPP) and the 4-hydroxyphenyl porphyrin (THPP), which show a relevant different degree of lipophilicity. A series of microemulsions (ME) and emulsions (E) were prepared, among which two formulations, one for THPP and one for TPP, have been chosen. The stability of these two carriers was monitored over time and under various temperature conditions. With the same criteria, two liposomal formulations have been also identified and analyzed. The four formulations mentioned above (one ME, one E and two liposomes) have been tested on SKOV3 tumor cell line comparing the photodynamic activity of the porphyrin formulations versus the aqueous/organic (DMSO) solution of the same two PSs. The results show that all the formulations have proved to be excellent carriers and that the liposomal formulation enhance the photodynamic efficacy of both porphyrins.


Subject(s)
Drug Carriers/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Cell Line, Tumor , Humans , Liposomes/chemistry
9.
Photochem Photobiol Sci ; 19(6): 790-799, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33856674

ABSTRACT

Two aza-BODIPY photosensitizes (PSs, compounds 7 and 8), featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields starting from commercial products and tested in vitro on two human cancer cell lines (HCT116 and SKOV3) to assess their photodynamic efficacy. After treating the cell cultures with variable concentrations of 7 or 8 and incubating for the desired incubation time, the cells were irradiated for two hours with a red-light emitting diode (LED) device; afterwards the extent of cell death was determined by MTT assay. Besides the killing effect, the new PSs were also studied to determine further parameters related to photodynamic efficacy, such as the resistance towards photobleaching, the rate of singlet oxygen production, the fluorescence quantum yields, the cellular uptake and the localization inside the cells and, finally, flow cytometric analysis for apoptosis. Considering the results as a whole, these aza-BODIPYs can be considered to be promising photosensitizers because of their IC50 values being below micromolar concentrations and for more rather interesting features. Actually, these molecules have proved to be: (a) quite stable towards photobleaching; (b) good producers of singlet oxygen and (c) highly penetrating the cells with a wide distribution in the cytosol. Furthermore, in accordance with the good rate of singlet oxygen production, the apoptotic cells reach 30% and this allows us to assume a low inflammatory effect of the in vivo PDT treatment; thus a possible in vivo application of these aza-BODIPYs might be plausible.


Subject(s)
Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasms/pathology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry
10.
J Photochem Photobiol B ; 197: 111548, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31288120

ABSTRACT

The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.


Subject(s)
Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cations/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Light , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Porphyrins/chemical synthesis , Porphyrins/pharmacology , Reactive Oxygen Species/metabolism
11.
J Photochem Photobiol B ; 195: 39-50, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31075653

ABSTRACT

Photodynamic therapy (PDT) of cancer uses photosensitizers (PS), a light source and oxygen to generate high levels of reactive oxygen species (ROS), that exert a cytotoxic action on tumor cells. Recently, it has been shown that mixed non-symmetrical diaryl porphyrins, with two different pendants, are more photodynamically active than symmetrical diaryl porphyrins. In the present study, we investigate the in vitro photodynamic effects of four novel non-symmetrical diaryl porphyrins, two of which bear one pentafluoro-phenyl and one bromo-alkyl (apolar) pendant, whereas the two others bear one pentafluoro-phenyl and one cationic pyridine pendant. The four compounds were tested in a small panel of human cancer cell lines, and their photodynamic activities were compared with that of m-THPC (Foscan), currently the most successful PS approved for clinical use in cancer PDT. The results of the cytotoxicity studies indicate that the two molecules bearing the cationic pendant are more potent in vitro than those with the apolar pendant, and that they are as potent as Foscan. To gain further insights into the mechanism of PS-induced phototoxicity, induction of apoptotic, autophagic and necrotic cell death, and generation of reactive oxygen species (ROS) were evaluated in cancer cells following exposure to the PSs and irradiation. The effect of the PSs on the migratory activity of the cells was also assessed. The data obtained from this work support a greater potency of diaryl porphyrins with a positive charge in inducing cell death, as compared to those with the bromo-alkyl pendant; most importantly, some of these novel compounds exhibit features that might make them superior to the clinically approved PS Foscan.


Subject(s)
Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Apoptosis/drug effects , Apoptosis/radiation effects , Autophagy/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Humans , Light , Neoplasms/drug therapy , Photobleaching , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...