Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 106(5): 052501, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405386

ABSTRACT

We measured with unprecedented precision the induced polarization P(y) in (4)He(e,e'p)(3)H at Q(2)=0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

2.
Phys Rev Lett ; 105(7): 072001, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868031

ABSTRACT

Proton recoil polarization was measured in the quasielastic 4He(e,e'p)3H reaction at Q{2}=0.8 and 1.3 (GeV/c){2} with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e'p) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.

3.
Phys Rev Lett ; 104(10): 102001, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20366414

ABSTRACT

We apply a recently developed technique to extract for the first time the neutron F(2)(n) structure function from inclusive proton and deuteron data in the nucleon resonance region, and test the validity of quark-hadron duality in the neutron. We establish the accuracy of duality in the low-lying neutron resonance regions over a range of Q(2), and compare with the corresponding results on the proton and with theoretical expectations. The confirmation of duality in both the neutron and proton opens the possibility of using resonance region data to constrain parton distributions at large x.

SELECTION OF CITATIONS
SEARCH DETAIL
...