Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
J Microsc ; 294(3): 420-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747464

ABSTRACT

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

2.
ArXiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38351940

ABSTRACT

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

3.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-38094098

ABSTRACT

CUTie2 is a FRET-based cGMP biosensor tested so far only in cells. To expand its use to multicellular organisms we generated two transgenic Drosophila melanogaster strains that express the biosensor in a tissue-dependent manner. CUTie2 expression and subcellular localization was verified by confocal microscopy. The performance of CUTie2 was analyzed on dissected larval brains by hyperspectral microscopy and flow cytometry. Both approaches confirmed its responsivity, and the latter showed a rapid and reversible change in the fluorescence of the FRET acceptor upon cGMP treatment. This validated reporter system may prove valuable for studying cGMP signaling at organismal level.

4.
Biophys Rev ; 15(4): 709-719, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681086

ABSTRACT

Over the past decade, the utilization of advanced fluorescence microscopy technologies has presented numerous opportunities to study or re-investigate autofluorescent molecules and harmonic generation signals as molecular biomarkers and biosensors for in vivo cell and tissue studies. The label-free approaches benefit from the endogenous fluorescent molecules within the cell and take advantage of their spectroscopy properties to address biological questions. Harmonic generation can be used as a tool to identify the occurrence of fibrillar or lipid deposits in tissues, by using second and third-harmonic generation microscopy. Combining autofluorescence with novel techniques and tools such as fluorescence lifetime imaging microscopy (FLIM) and hyperspectral imaging (HSI) with model-free analysis of phasor plots has revolutionized the understanding of molecular processes such as cellular metabolism. These tools provide quantitative information that is often hidden under classical intensity-based microscopy. In this short review, we aim to illustrate how some of these technologies and techniques may enable investigation without the need to add a foreign fluorescence molecule that can modify or affect the results. We address some of the most important autofluorescence molecules and their spectroscopic properties to illustrate the potential of these combined tools. We discuss using them as biomarkers and biosensors and, under the lens of this new technology, identify some of the challenges and potentials for future advances in the field.

5.
Nat Commun ; 14(1): 6081, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770422

ABSTRACT

Membrane wetting by biomolecular condensates recently emerged as a key phenomenon in cell biology, playing an important role in a diverse range of processes across different organisms. However, an understanding of the molecular mechanisms behind condensate formation and interaction with lipid membranes is still missing. To study this, we exploited the properties of the dyes ACDAN and LAURDAN as nano-environmental sensors in combination with phasor analysis of hyperspectral and lifetime imaging microscopy. Using glycinin as a model condensate-forming protein and giant vesicles as model membranes, we obtained vital information on the process of condensate formation and membrane wetting. Our results reveal that glycinin condensates display differences in water dynamics when changing the salinity of the medium as a consequence of rearrangements in the secondary structure of the protein. Remarkably, analysis of membrane-condensates interaction with protein as well as polymer condensates indicated a correlation between increased wetting affinity and enhanced lipid packing. This is demonstrated by a decrease in the dipolar relaxation of water across all membrane-condensate systems, suggesting a general mechanism to tune membrane packing by condensate wetting.


Subject(s)
Biomolecular Condensates , Membrane Lipids , Proteins , Water
6.
Front Immunol ; 14: 1250350, 2023.
Article in English | MEDLINE | ID: mdl-37638003

ABSTRACT

Pulmonary surfactant (PS), a complex mixture of lipids and proteins, is essential for maintaining proper lung function. It reduces surface tension in the alveoli, preventing collapse during expiration and facilitating re-expansion during inspiration. Additionally, PS has crucial roles in the respiratory system's innate defense and immune regulation. Dysfunction of PS contributes to various respiratory diseases, including neonatal respiratory distress syndrome (NRDS), adult respiratory distress syndrome (ARDS), COVID-19-associated ARDS, and ventilator-induced lung injury (VILI), among others. Furthermore, PS alterations play a significant role in chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The intracellular stage involves storing and releasing a specialized subcellular organelle known as lamellar bodies (LB). The maturation of these organelles requires coordinated signaling to organize their intracellular organization in time and space. LB's intracellular maturation involves the lipid composition and critical processing of surfactant proteins to achieve proper functionality. Over a decade ago, the supramolecular organization of lamellar bodies was studied using electron microscopy. In recent years, novel bioimaging tools combining spectroscopy and microscopy have been utilized to investigate the in cellulo intracellular organization of lamellar bodies temporally and spatially. This short review provides an up-to-date understanding of intracellular LBs. Hyperspectral imaging and phasor analysis have allowed identifying specific transitions in LB's hydration, providing insights into their membrane dynamics and structure. A discussion and overview of the latest approaches that have contributed to a new comprehension of the trafficking and structure of lamellar bodies is presented.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Respiratory Distress Syndrome , Adult , Infant, Newborn , Humans
7.
Nat Methods ; 20(7): 965-967, 2023 07.
Article in English | MEDLINE | ID: mdl-37434000

Subject(s)
Diagnostic Imaging
8.
Biochim Biophys Acta Biomembr ; 1865(7): 184176, 2023 10.
Article in English | MEDLINE | ID: mdl-37328024

ABSTRACT

Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.


Subject(s)
Laurates , Membrane Fluidity , Cell Membrane/metabolism , Laurates/chemistry , Collagen/metabolism
9.
Methods Mol Biol ; 2564: 53-74, 2023.
Article in English | MEDLINE | ID: mdl-36107337

ABSTRACT

Fluorescent proteins are standard tools for addressing biological questions in a cell biology laboratory. The genetic tagging of protein of interest with fluorescent proteins opens the opportunity to follow them in vivo and to understand their interactions and dynamics. In addition, the latest advances in optical microscopy image acquisition and processing allow us to study many cellular processes in vivo. Techniques such as fluorescence lifetime microscopy and hyperspectral imaging provide valuable tools for understanding fluorescent protein interactions and their photophysics. Finally, fluorescence fluctuation analysis opens the possibility to address questions of molecular diffusion, protein-protein interactions, and oligomerization, among others, yielding quantitative information on the subject of study. This chapter will cover some of the more important advances in cutting-edge technologies and methods that, combined with fluorescent proteins, open new frontiers for biological studies.


Subject(s)
Coloring Agents , Proteins , Cell Physiological Phenomena , Microscopy, Fluorescence/methods
10.
Front Oncol ; 13: 1296826, 2023.
Article in English | MEDLINE | ID: mdl-38162497

ABSTRACT

Introduction: Melanoma diagnosis traditionally relies on microscopic examination of hematoxylin and eosin (H&E) slides by dermatopathologists to search for specific architectural and cytological features. Unfortunately, no single molecular marker exists to reliably differentiate melanoma from benign lesions such as nevi. This study explored the potential of autofluorescent molecules within tissues to provide molecular fingerprints indicative of degenerated melanocytes in melanoma. Methods: Using hyperspectral imaging (HSI) and spectral phasor analysis, we investigated autofluorescence patterns in melanoma compared to intradermal nevi. Using UV excitation and a commercial spectral confocal microscope, we acquired label-free HSI data from the whole-slice samples. Results: Our findings revealed distinct spectral phasor distributions between melanoma and intradermal nevi, with melanoma displaying a broader phasor phase distribution, signifying a more heterogeneous autofluorescence pattern. Notably, longer wavelengths associated with larger phases correlated with regions identified as melanoma by expert dermatopathologists using H&E staining. Quantitative analysis of phase and modulation histograms within the phasor clusters of five melanomas (with Breslow thicknesses ranging from 0.5 mm to 6 mm) and five intradermal nevi consistently highlighted differences between the two groups. We further demonstrated the potential for the discrimination of several melanocytic lesions using center-of-mass comparisons of phase and modulation variables. Remarkably, modulation versus phase center of mass comparisons revealed strong statistical significance among the groups. Additionally, we identified the molecular endogenous markers responsible for tissue autofluorescence, including collagen, elastin, NADH, FAD, and melanin. In melanoma, autofluorescence is characterized by a higher phase contribution, indicating an increase in FAD and melanin in melanocyte nests. In contrast, NADH, elastin, and collagen dominate the autofluorescence of the nevus. Discussion: This work underscores the potential of autofluorescence and HSI-phasor analysis as valuable tools for quantifying tissue molecular fingerprints, thereby supporting more effective and quantitative melanoma diagnosis.

11.
Methods Appl Fluoresc ; 11(1)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36252561

ABSTRACT

Hyperspectral imaging (HSI) is a paramount technique in biomedical science, however, unmixing and quantification of each spectral component is a challenging task. Traditional unmixing relies on algorithms that need spectroscopic parameters from the fluorescent species in the sample. The phasor-based multi-harmonic unmixing method requires only the empirical measurement of the pure species to compute the pixel-wise photon fraction of every spectral component. Using simulations, we demonstrate the feasibility of the approach for up to 5 components and explore the use of adding a 6th unknown component representing autofluorescence. The simulations show that the method can be successfully used in typical confocal imaging experiments (with pixel photon counts between 101and 103). As a proof of concept, we tested the method in living cells, using 5 common commercial dyes for organelle labeling and we easily and accurately separate them. Finally, we challenged the method by introducing a solvatochromic probe, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (LAURDAN), intended to measure membrane dynamics on specific subcellular membrane-bound organelles by taking advantage of the linear combination between the organelle probes and LAURDAN. We succeeded in monitoring the membrane order in the Golgi apparatus, Mitochondria, and plasma membrane in the samein-vivocell and quantitatively comparing them. The phasor-based multi-harmonic unmixing method can help expand the outreach of HSI and democratize its use by the community for it does not require specialized knowledge.


Subject(s)
2-Naphthylamine , Laurates , Laurates/analysis , Laurates/chemistry , 2-Naphthylamine/analysis , 2-Naphthylamine/chemistry , Microscopy, Fluorescence/methods , Cell Membrane
12.
Methods Appl Fluoresc ; 10(4)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36027875

ABSTRACT

This article reviews the use of the 6-acetyl-2-(dimethylamino)naphthalene (ACDAN) fluorophore to study dipolar relaxation in cells, tissues, and biomimetic systems. As the most hydrophilic member of the 6-acyl-2-(dimethylamino)naphthalene series, ACDAN markedly partitions to aqueous environments. In contrast to 6-lauroyl-2-(dimethylamino)naphthalene (LAURDAN), the hydrophobic and best-known member of the series used to explore relaxation phenomena in biological (or biomimetic) membranes, ACDAN allows mapping of spatial and temporal water dipolar relaxation in cytosolic and intra-organelle environments of the cell. This is also true for the 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) derivative which, unlike LAURDAN, partitions to both hydrophobic and aqueous environments. We will (i) summarize the mechanism which underlies the solvatochromic properties of the DAN probes, (ii) expound on the importance of water relaxation to understand the intracellular environment, (iii) discuss technical aspects of the use of ACDAN in eukaryotic cells and some specialized structures, including liquid condensates arising from processes leading to liquid immiscibility and, (iv) present some novel studies in plant cells and tissues which demonstrate the kinds of information that can be uncovered using this approach to study dipolar relaxation in living systems.


Subject(s)
Fluorescent Dyes , Water , Fluorescent Dyes/chemistry , Naphthalenes , Water/chemistry
13.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35563654

ABSTRACT

Protein self-assembly is a common feature in biology and is often required for a myriad of fundamental processes, such as enzyme activity, signal transduction, and transport of solutes across membranes, among others. There are several techniques to find and assess homo-oligomer formation in proteins. Naturally, all these methods have their limitations, meaning that at least two or more different approaches are needed to characterize a case study. Herein, we present a new method to study protein associations using intrinsic fluorescence lifetime with phasors. In this case, the method is applied to determine the equilibrium dissociation constant (KD) of human peroxiredoxin 1 (hPrx1), an efficient cysteine-dependent peroxidase, that has a quaternary structure comprised of five head-to-tail homodimers non-covalently arranged in a decamer. The hPrx1 oligomeric state not only affects its activity but also its association with other proteins. The excited state lifetime of hPrx1 has distinct values at high and low concentrations, suggesting the presence of two different species. Phasor analysis of hPrx1 emission lifetime allowed for the identification and quantification of hPrx1 decamers, dimers, and their mixture at diverse protein concentrations. Using phasor algebra, we calculated the fraction of hPrx1 decamers at different concentrations and obtained KD (1.1 × 10-24 M4) and C0.5 (1.36 µM) values for the decamer-dimer equilibrium. The results were validated and compared with size exclusion chromatography. In addition, spectral phasors provided similar results despite the small differences in emission spectra as a function of hPrx1 concentration. The phasor approach was shown to be a highly sensitive and quantitative method to assess protein oligomerization and an attractive addition to the biophysicist's toolkit.


Subject(s)
Peroxidase , Peroxiredoxins , Cysteine , Fluorescence , Humans , Peroxiredoxins/metabolism
14.
Sci Adv ; 8(7): eabj4833, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35171678

ABSTRACT

Macromolecular crowding is crucial for cellular homeostasis. In vivo studies of macromolecular crowding and water dynamics are needed to understand their roles in cellular physiology and fate determination. Macromolecular crowding in the lens is essential for normal optics, and an understanding of its regulation will help prevent cataract and presbyopia. Here, we combine the use of the nanoenvironmental sensor [6-acetyl-2-dimethylaminonaphthalene (ACDAN)] to visualize lens macromolecular crowding with in vivo studies of aquaporin 0 zebrafish mutants that disrupt its regulation. Spectral phasor analysis of ACDAN fluorescence reveals water dipolar relaxation and demonstrates that mutations in two zebrafish aquaporin 0s, Aqp0a and Aqp0b, alter water state and macromolecular crowding in living lenses. Our results provide in vivo evidence that Aqp0a promotes fluid influx in the deeper lens cortex, whereas Aqp0b facilitates fluid efflux. This evidence reveals previously unidentified spatial regulation of macromolecular crowding and spatially distinct roles for Aqp0 in the lens.


Subject(s)
Aquaporins , Lens, Crystalline , Animals , Aquaporins/genetics , Eye Proteins , Lens, Crystalline/metabolism , Water/metabolism , Zebrafish/metabolism
15.
Sensors (Basel) ; 22(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35161742

ABSTRACT

The phasor approach to fluorescence lifetime imaging, and more recently hyperspectral fluorescence imaging, has increased the use of these techniques, and improved the ease and intuitiveness of the data analysis. The fit-free nature of the phasor plots increases the speed of the analysis and reduces the dimensionality, optimization of data handling and storage. The reciprocity principle between the real and imaginary space-where the phasor and the pixel that the phasor originated from are linked and can be converted from one another-has helped the expansion of this method. The phasor coordinates calculated from a pixel, where multiple fluorescent species are present, depends on the phasor positions of those components. The relative positions are governed by the linear combination properties of the phasor space. According to this principle, the phasor position of a pixel with multiple components lies inside the polygon whose vertices are occupied by the phasor positions of these individual components and the distance between the image phasor to any of the vertices is inversely proportional to the fractional intensity contribution of that component to the total fluorescence from that image pixel. The higher the fractional intensity contribution of a vertex, the closer is the resultant phasor. The linear additivity in the phasor space can be exploited to obtain the fractional intensity contribution from multiple species and quantify their contribution. This review details the various mathematical models that can be used to obtain two/three/four components from phasor space with known phasor signatures and then how to obtain both the fractional intensities and phasor positions without any prior knowledge of either, assuming they are mono-exponential in nature. We note that other than for blind components, there are no restrictions on the type of the decay or their phasor positions for linear combinations to be valid-and they are applicable to complicated fluorescence lifetime decays from components with intensity decays described by multi-exponentials.


Subject(s)
Coloring Agents , Optical Imaging , Microscopy, Fluorescence
16.
Biol Open ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34409430

ABSTRACT

White adipose tissue hyperplasia has been shown to be crucial for handling excess energy in healthy ways. Though adipogenesis mechanisms have been underscored in vitro, we lack information on how tissue and systemic factors influence the differentiation of new adipocytes. While this could be studied in zebrafish, adipocyte identification currently relies on neutral lipid labeling, thus precluding access to cells in early stages of differentiation. Here we report the generation and analysis of a zebrafish line with the transgene fabp4a(-2.7):EGFPcaax. In vivo confocal microscopy of the pancreatic and abdominal visceral depots of transgenic larvae, revealed the presence of labeled mature adipocytes as well as immature cells in earlier stages of differentiation. Through co-labeling for blood vessels, we observed a close interaction of differentiating adipocytes with endothelial cells through cell protrusions. Finally, we implemented hyperspectral imaging and spectral phasor analysis in Nile Red-labeled transgenic larvae and revealed the lipid metabolic transition towards neutral lipid accumulation of differentiating adipocytes. Altogether our work presents the characterization of a novel adipocyte-specific label in zebrafish and uncovers previously unknown aspects of in vivo adipogenesis. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adipocytes/physiology , Adipogenesis/genetics , Adipose Tissue, White/cytology , Cell Differentiation/genetics , Zebrafish/embryology , Adiponectin/metabolism , Animals , Animals, Genetically Modified , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line , Complement Factor D/metabolism , Endothelial Cells/physiology , Fatty Acid-Binding Proteins/metabolism
17.
Commun Biol ; 4(1): 721, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117344

ABSTRACT

Hyperspectral imaging is highly sought after in many fields including mineralogy and geology, environment and agriculture, astronomy and, importantly, biomedical imaging and biological fluorescence. We developed ultrafast phasor-based hyperspectral snapshot microscopy based on sine/cosine interference filters for biomedical imaging not feasible with conventional hyperspectral detection methods. Current approaches rely on slow spatial or spectral scanning limiting their application in living biological tissues, while faster snapshot methods such as image mapping spectrometry and multispectral interferometry are limited in spatial and/or spectral resolution, are computationally demanding, and imaging devices are very expensive to manufacture. Leveraging light sheet microscopy, phasor-based hyperspectral snapshot microscopy improved imaging speed 10-100 fold which, combined with minimal light exposure and high detection efficiency, enabled hyperspectral metabolic imaging of live, three-dimensional mouse tissues not feasible with other methods. As a fit-free method that does not require any a priori information often unavailable in complex and evolving biological systems, the rule of linear combinations of the phasor could spectrally resolve subtle differences between cell types in the developing zebrafish retina and spectrally separate and track multiple organelles in 3D cultured cells over time. The sine/cosine snapshot method is adaptable to any microscope or imaging device thus making hyperspectral imaging and fit-free analysis based on linear combinations broadly available to researchers and the public.


Subject(s)
Hyperspectral Imaging/methods , Imaging, Three-Dimensional/methods , Microscopy/methods , Animals , Colon/ultrastructure , Mice , Mice, Inbred C57BL , NIH 3T3 Cells/ultrastructure , Organelles/ultrastructure , Retina/cytology , Retina/ultrastructure , Zebrafish/embryology
19.
Annu Rev Biophys ; 50: 575-593, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33957055

ABSTRACT

The phasor approach to fluorescence lifetime imaging has become a common method to analyze complicated fluorescence signals from biological samples. The appeal of the phasor representation of complex fluorescence decays in biological systems is that a visual representation of the decay of entire cells or tissues can be used to easily interpret fundamental biological states related to metabolism and oxidative stress. Phenotyping based on autofluorescence provides new avenues for disease characterization and diagnostics. The phasor approach is a transformation of complex fluorescence decays that does not use fits to model decays and therefore has the same information content as the original data. The phasor plot is unique for a given system, is highly reproducible, and provides a robust method to evaluate the existence of molecular interactions such as Förster resonance energy transfer or the response of ion indicators. Recent advances permitquantification of multiple components from phasor plots in fluorescence lifetime imaging microscopy, which is not presently possible using data fitting methods, especially in biological systems.


Subject(s)
Fluorescence , Fluorescence Resonance Energy Transfer/methods , Humans , Microscopy, Fluorescence/methods , Optical Imaging
20.
Front Med (Lausanne) ; 8: 606678, 2021.
Article in English | MEDLINE | ID: mdl-33768102

ABSTRACT

Although oxygen (O2) is essential for aerobic life, it can also be an important source of cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated reactive oxygen species (ROS) production, impairing the homeostatic balance of several cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying the tissue damage. The lung is the first (but not the only) organ affected by this condition. Critically ill patients are often exposed to several insults, such as mechanical ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational investigations with animal models are essential to explore injuring stimuli in controlled experimental conditions, and are milestones in understanding pathological mechanisms and developing therapeutic strategies. Animal models can resemble what happens in critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are also critical to explore the effect of O2 on lung development and the role of hyperoxic damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia effects on lung pathology, contributing to the field by describing and analyzing animal experimentation's main aspects and its implications on human lung diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...