Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
J Contam Hydrol ; 265: 104379, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38851130

ABSTRACT

During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.

3.
Environ Res ; : 119485, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917933

ABSTRACT

Soil deterioration is a major cause of poor agricultural productivity, necessitating sufficient nutrient inputs like fertilizers and amendments for sustainable use. As one such strategy, the current study evaluates the potential of Sargassum wightii, a brown seaweed extract, as an osmopriming agent to improve seed germination, early establishment, and competent seedling performances in acidic soil. The elemental makeup of seaweed extract (BS) showed that it included major plant macro (Potassium, Nitrogen and Phosphorous), as well as micronutrients (Magnesium and Iron) and trace elements (Zinc, Copper, and Molybdenum). While seed germination was impacted by H+ ion toxicity, seeds primed with BS emerged earlier and showed a higher germination percentage (98.2%) and energy (92.4%). BS treatments enhanced seedling growth by 63% and had a positive effect on root growth (68.2%) as well as increases in root surface area (10%) and volume (67.01%). Stressed seedlings had 76.39% and 63.2% less carotenoid and chlorophyll, respectively. In seedlings treated with BS, an increase in protein and Total Soluble Sugars content of 14.56 and 7.19%, respectively, was seen. Fourier Transform-Infra Red analysis of postharvest soil indicated improved soil health with absorbance corresponding to enhanced soil water holding capacity and organic matter. Increased abscisic acid synthesis rate and associated antioxidant enzyme system (Malondialdehyde, Glutathione peroxidases and ascorbate peroxidase) activation, along with enhanced H+ adenosine triphosphate-ase and glutathione activities, help ameliorate and deport H+ ions from cells, scavenge Reactive Oxygen Species, thus protecting cells from injury. Seaweed extract successfully reduced H+-induced ion toxicities in rice by promoting their germination, physiological, metabolically, and growth parameters that could ultimately increase their productivity and yield in a sustainable and environmentally friendly manner.

4.
Aquat Toxicol ; 271: 106931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718520

ABSTRACT

Numerous studies evaluate chemical contaminants released by human activities and their effects on biota and aquatic ecosystems. However, few of these studies address non-toxic agents and their potentially harmful effects, which, in a concealed manner, culminate in an increased ecotoxicological risk for aquatic life and public health. This study investigated the presence of toxic and non-toxic pollutants in one of the main watersheds in Northeast Brazil (Rio São Francisco) and proposed a model of dispersion and transfer of resistance among the analyzed bacteria, also assessing the health risks of individuals and aquatic organisms present there. The results are worrying because although most toxic parameters, including physical-chemical and chromatographic aspects, comply with Brazilian environmental standards, non-toxic (microbiological) parameters do not. This research reveals the circulation of pathogens in several points of this hydrographic basin, highlighting the hidden ecotoxicological potential of an aquatic environment considered unaffected by the usual patterns of toxic parameters.


Subject(s)
Ecotoxicology , Environmental Monitoring , Water Pollutants, Chemical , Brazil , Water Pollutants, Chemical/toxicity , Risk Assessment , Bacteria/drug effects , Animals , Aquatic Organisms/drug effects , Rivers/chemistry
5.
RSC Adv ; 14(20): 13862-13899, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38694553

ABSTRACT

The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.

6.
Article in English | MEDLINE | ID: mdl-38641085

ABSTRACT

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 µg/L) and DCF (at 50 and 500 µg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1ß expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.


Subject(s)
Diclofenac , Embryonic Development , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/embryology , Diclofenac/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Embryonic Development/drug effects , Oxidative Stress/drug effects , Embryo, Nonmammalian/drug effects , Nanoparticles/toxicity , Microplastics/toxicity , Drug Synergism
7.
Chemosphere ; 354: 141678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485003

ABSTRACT

Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to µg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid , Ecosystem , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations
8.
Mar Pollut Bull ; 200: 116137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377866

ABSTRACT

The escalating global microplastic (MP) pollution severely threatens marine life due to insufficient waste management and widespread single-use plastic. This study focuses on assessing MP contamination in commercial prawns from Gujarat State, India. Ten prawn species collected at five main fishing harbors revealed 590 MP particles in their gastrointestinal tracts, averaging 6.08 ± 5.96 MPs/g and 1.15 ± 0.78 MPs/individual. Significant variations in contamination levels were observed between species and study sites. Pollution indices indicated very high contamination throughout the study sites. Threads were the predominant shape, with blue and black as prevalent colors. Size-wise, 1-2 mm MPs dominated. Polymer analysis identified polyethylene terephthalate, polyurethane, polystyrene, polypropylene, polyvinyl chloride, and acrylonitrile butadiene styrene. The findings provided crucial preliminary information for ecotoxicology and seafood safety investigations regarding MP contamination in commercially important prawns.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Prevalence , Environmental Monitoring , Water Pollutants, Chemical/analysis , Seafood/analysis
9.
Environ Res ; 250: 118543, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38417661

ABSTRACT

While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.


Subject(s)
Environmental Monitoring , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Lakes/analysis , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Bangladesh , Geologic Sediments/analysis , Geologic Sediments/chemistry
10.
Chemosphere ; 350: 141055, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176589

ABSTRACT

The utilization of natural fibres often entails a lesser environmental impact when compared to synthetic fibres. Biodegradable natural fibres minimize waste and pollution, and promote sustainability, but their weaker bonds limit their resilience. These issues can be addressed by customizing the composite's mechanical properties with natural and synthetic fibres. In this study, hybrid composites were created using the hand layup method with a novel dissimilar layer arrangement of neem (N), sisal (S), and glass (G) fibre and analyze its mechanical and thermal properties. Experimental observation shows that the GN composite had a higher maximum ultimate tensile strength of 26 N/mm2 than the GS, GNS, and GSN composites. The GN composite had a percentage elongation of 6.33%, similar to the percentage elongation of the GS composite (6.833%), and it also had a higher ultimate shear strength of 50 MPa. The composite GS absorbed 6.6 J energy, higher than the composites GN, GNS, and GNS, which absorbed 6.1 J, 4.5 J, and 4.5 J, respectively. The fractured surface's SEM images were obtained and analyzed for failure. The results demonstrated that the hybridization was effective, and better properties can be obtained by combining neem, sisal, and glass fiber, and it can be used for other requirements, including strength, weight, cost, and ecological impact.


Subject(s)
Composite Resins , Environmental Restoration and Remediation , Materials Testing , Composite Resins/chemistry , Environmental Pollution , Tensile Strength
11.
Environ Res ; 247: 118179, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38218516

ABSTRACT

Globally, soil acidification is a serious environmental issue that reduces commercial agricultural production. Rice is subjected to nutritional stress due to acidic soil, which is a major impediment to rice production. Since acid soil threatens rice plants with soil compaction, nutrient loss, and plant stress-induced oxidative cell damage that results in affecting the photosynthetic system, restricting the availability of water, and reducing overall plant growth and productivity. Since contemporary soil acidification management strategies provide mediocre results, the use of Sargassum wightii seaweed-based biostimulants (BS) and soil amendments is sought as an environmentally friendly alternative strategy, and therefore its potential isevaluated in this study. BS was able to mediate soil quality by improving soil pH and structure along with facilitating nitrogen phytoavailability. BS also increased the activity of the antioxidant enzyme system, superoxide dismutase ((48%), peroxidase (76.6%), and ascorbate peroxidase (63.5%), aggregating the monaldehyde-mediating accumulation of osmoprotective proline in roots, that was evident from rapid initiation of root hair growth in treated seedlings. BS was also able to physiologically modulate photosynthetic activities and chlorophyll production (24.31%) in leaves, maintaining the efficiency of plant water use by regulating the stomatal conductance (0.91 mol/m/s) and the transpiration rate (13.2 mM/m/s). The BS compounds were also successful in facilitating nitrogen uptake resulting in improved plant growth (59%), tiller-panicle number, and yield (52.57%), demonstrating a resourceful nitrogen use efficiency (71.96%) previously affected by stress induced by acid soil. Therefore, the study affirms the competent potential of S. wightii-based soil amendment to be applied not only to improve soil quality, but also to increase plant production and yield.


Subject(s)
Oryza , Soil , Photosynthesis/physiology , Antioxidants/metabolism , Nitrogen , Vegetables , Water
12.
Environ Monit Assess ; 196(2): 137, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200343

ABSTRACT

Plasticrusts manifest as a coating on intertidal rocks due to environmental exposure. They refer to crushed plastic debris that blankets rocks found along intertidal shorelines. This study significantly contributes to a better understanding of the occurrence of these novel plastic formations, shedding light on their potential pathways of formation during the Anthropocene era. The research provides comprehensive insights into the composition, origins, challenges, and effective management strategies for removing coastal plastic litter. The findings of this investigation offer valuable evidence regarding the formation and impact of these recently discovered plastic items in coastal regions, prompting discussions about their formation processes and their effects on the marine ecosystem. Recognizing that these newly emerged plastic litter pose a considerable threat to the marine environment is crucial. With their emergence, we face an environmental challenge, especially concerning the health of coastal ecosystems. Plasticrusts, when degraded, can release microplastics (MPs) and nanoparticles (NPs) into the surrounding environment. These micro- and nano-sized plastic particles pose significant ecological risks as they persist in ecosystems, potentially harming wildlife and entering the food chain, causing widespread environmental contamination. Significantly, it outlines strategies to minimize the impact of this emerging plastic debris and its source.


Subject(s)
Ecosystem , Plastics , Animals , Environmental Monitoring , Animals, Wild , Environmental Exposure
13.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167034

ABSTRACT

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Subject(s)
Microplastics , Polystyrenes , Mice , Animals , Microplastics/toxicity , Plastics , Single-Cell Gene Expression Analysis , Diet, High-Fat/adverse effects , Endothelial Cells , Phosphatidylinositol 3-Kinases , Kidney , Carcinogenesis , Mammals , Tumor Microenvironment
14.
Environ Pollut ; 344: 123400, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38272167

ABSTRACT

Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.


Subject(s)
Ototoxicity , Perciformes , Animals , Zebrafish , Ecosystem , Anti-Bacterial Agents/toxicity , Environmental Pollution
15.
Sci Total Environ ; 918: 170499, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296101

ABSTRACT

Polypropylene based medical devices significantly increased production and usage in COVID-19 pandemic states, and this material is very resilient in the environment. Thus, more than ever, rapid action is needed to reduce this pollution. This study focuses on the degradation of polypropylene microplastics (PP MPs) by unique marine bacterial strains obtained from the Thoundi (Bacillus tropicus, Bacillus cereus, Stenotrophomonas acidaminiphila, and Brucella pseudintermedia) and Rameshwaram coasts (Bacillus cereus). Those above five bacterial strains were chosen after preliminary screening of their hydrophobicity, biofilm-forming capabilities, and responsiveness to the zone of clearance technique. During the biodegradation process (28 days), the growth, metabolic activity, and viability of these five isolates were all raised. After the post-biodegradation process, the weight loss percentages of the mentioned bacterial strains treated with PP MPs gradually decreased, with values of 51.5 ± 0.5 %, 47.5 ± 0.5 %, 33 ± 1 %, 28.5 ± 0.5 and 35.5 ± 0.5 %, respectively. UV-Vis DRS and SEM analysis confirmed that bacterial strains adhering to MPs cause cracks and cavities on their surface. The degradation of PP MPs can be inferred from alterations in the FT-IR spectrum, specifically in the carbonyl group range of 1100-1700 cm-1, as well as changes in the 1H NMR spectrum, including chemical shift and proton peak pattern alterations. Bacterial strains facilitated the degradation of PP MPs through the secretion of hydrolase-categorized enzymes of protease, lipase, and esterase. The findings of this study indicate that marine bacteria may possess distinctive characteristics that facilitate the degradation of plastic waste and contribute to environmental conservation.


Subject(s)
Polypropylenes , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Spectroscopy, Fourier Transform Infrared , Pandemics , Biodegradation, Environmental , Bacillus cereus/metabolism , Water Pollutants, Chemical/analysis
16.
J Contam Hydrol ; 260: 104271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056088

ABSTRACT

Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Humans , Plastics , Microplastics , Bays , Estuaries , Biodiversity , Polymers , Water , Environmental Monitoring , Geologic Sediments
17.
Environ Sci Pollut Res Int ; 31(2): 2343-2359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057678

ABSTRACT

Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.


Subject(s)
Catfishes , Metals, Heavy , Water Pollutants, Chemical , Animals , Child , Humans , Metals, Heavy/analysis , Rivers , Cadmium , Bioaccumulation , Public Health , Bangladesh , Lead , Fishes , Environmental Monitoring , Water Pollutants, Chemical/analysis , Risk Assessment
19.
Mar Pollut Bull ; 198: 115863, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039574

ABSTRACT

This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 µm size class was significantly higher than the 1500-3000 µm and 3000-5000 µm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Salts , Bangladesh , Water Pollutants, Chemical/analysis , Environmental Monitoring , Sodium Chloride, Dietary/analysis
20.
Sci Total Environ ; 913: 169529, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160826

ABSTRACT

Chemical pollutants represent a leading problem for aquatic ecosystems, as they can induce genetic, biochemical, and physiological changes in the species of these ecosystems, thus compromising their adaptability and survival. The Capibaribe River runs through the state of Pernambuco, located in Northeastern Brazil, and passes through areas of agricultural cultivation, densely populated cities, and industrial centers, primarily textiles. Despite its importance, few ecotoxicological studies have been conducted on its environment, and knowledge about pollution patterns and their effects on its biota is still being determined. The objective of this study was to evaluate the water quality and the damage supposed to be caused by pollutants on the DNA specimens of Nile tilapia (Oreochromis niloticus) obtained from seven strategic points of Capibaribe. Tilapia specimens and water were collected during the rainy and dry seasons from 2015 to 2017. The following characteristics were analyzed: physicochemical (six), metal concentration (seven), local pluviosity, micronuclei, and comet assay. The physicochemical and heavy metal analyses were exploratory, whereas the ecotoxicological analyses were hypothetical. To verify this hypothesis, we compared the groups of fish collected to the results of the micronuclei test and comet assay. We created a Structural Equation Model (SEM) to determine how each metal's micronuclei variables, damage index, pluviosity, and concentration were related. Our results demonstrated that the highest values for markers of genetic damage were detected at points with the highest heavy metal concentrations, especially iron, zinc, manganese, chromium, and cadmium. The SEM demonstrated that metals could explain the findings of the genotoxicity markers. Moreover, other pollutants, such as pesticides, should be considered, mainly where the river passes through rural areas. The results presented here demonstrate that the Capibaribe River has different degrees of contamination and confirm our hypothesis.


Subject(s)
Cichlids , Metals, Heavy , Water Pollutants, Chemical , Animals , Rivers/chemistry , Mutagens/toxicity , Mutagens/analysis , Ecosystem , Latent Class Analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , DNA Damage , Fresh Water , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...