Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37645232

ABSTRACT

Evolutionary innovations refer to the emergence of new traits, functions, or behaviors in organisms and lineages over time. Although research has demonstrated that such innovations can arise gradually or through small steps (Chouard 2010), the mechanisms by which rapid morphological diversification takes place remain poorly understood (Bailey et al. 2019). To explore this question, we used the evolution of sex combs, as a system (Ho et al. 2018). We used this male-specific row of leg bristles, comprising sex combs as a system, because it displays spectacular morphological diversification in a short time (Kopp 2011). Homeotic mutations in the fruit fly, Drosophila melanogaster, are those which create modifications in one part of a fly to resemble another region. Here we describe effects of some of these mutations which transform the D. melanogaster fly sex comb morphology to closely resemble sex comb morphology in other species. These findings support previous research indicating that minor alterations to regulatory elements can play a significant role in explaining morphological evolution (Atallah et al. 2004). Thus, our results suggest that rapid diversification may not require starting from scratch, but rather may require minor modifications to the sex comb ground plan, which may account for its rapid morphological evolution (Lee et al. 2011).

2.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35783574

ABSTRACT

A circulating tumor cell (CTC) is a type of cell that is shed from solid tumors, swept away in the bloodstream or lymphatic system, and has the potential to cause tumorigenesis at a secondary location. Here we describe an early pupal leg system to study CTCs in vivo and to compare the CTCs described in this work to those previously studied in vitro. We quantified cellular parameters such as the number, size, and shape of CTCs, and our findings are consistent with previous in vitro studies. Thus, live imaging of CTCs in model organisms can complement and validate previous work in this field and can be an initial step when deciphering how in vivo CTCs behave in humans during metastasis.

3.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36606080

ABSTRACT

Epithelia are highly dynamic tissues displaying various types of tissue rearrangements (Weliky and Oster, 1990; Taylor and Adler, 2008; Harris and Tepass, 2010; Lee et al. , 2013; Firmino et al. , 2016; Rupprecht et al. , 2017). Here, we describe the dynamics of changes in apical cell area (ACA) in an epithelial system displaying tissue rearrangement resulting in sex comb rotation on the forelegs of male Drosophila melanogaster . The sex comb is a row of leg bristles which rotates during morphogenesis (Atallah, 2008; Atallah et al. , 2009; Malagon, 2013). We quantified the ACA in the region proximal to the developing sex comb by tracing apical cell boundaries using ImageJ in pupal first leg imaginal discs. We found that cells display intricate irregular oscillations in size as the comb rotates. However, the net changes in ACA within most of the cells studied are subtle, only 0 to +/-15%. Our current working hypothesis suggests these irregular oscillations confer flexibility during tissue rearrangement and can be an important mechanism for tissue homeostasis.

4.
PLoS Comput Biol ; 14(10): e1006455, 2018 10.
Article in English | MEDLINE | ID: mdl-30303951

ABSTRACT

The morphogenesis of sex combs (SCs), a male trait in many species of fruit flies, is an excellent system in which to study the cell biology, genetics and evolution of a trait. In Drosophila melanogaster, where the incipient SC rotates from horizontal to a vertical position, three signal comb properties have been documented: length, final angle and shape (linearity). During SC rotation, in which many cellular processes are occurring both spatially and temporally, it is difficult to distinguish which processes are crucial for which attributes of the comb. We have used a novel approach combining simulations and experiments to uncover the spatio-temporal dynamics underlying SC rotation. Our results indicate that 1) the final SC shape is primarily controlled by the inhomogeneity of initial cell size in cells close to the immature comb, 2) the final angle is primarily controlled by later cell expansion and 3) a temporal sequence of cell expansion mitigates the malformations generally associated with longer rotated SCs. Overall, our work has linked together the morphological diversity of SCs and the cellular dynamics behind such diversity, thus providing important insights on how evolution may affect SC development via the behaviours of surrounding epithelial cells.


Subject(s)
Animal Structures/growth & development , Drosophila melanogaster/growth & development , Epithelial Cells/physiology , Morphogenesis/physiology , Algorithms , Animals , Computational Biology , Epithelial Cells/cytology , Male
5.
Acta biol. colomb ; 21(3): 495-500, set.-dic, 2016. ilus
Article in Spanish | LILACS | ID: biblio-827627

ABSTRACT

La interacción de grupos de genes, proteínas, y células es necesaria para el desarrollo de un organismo multicelular. Por tal motivo, la teoría de la complejidad puede ser una herramienta indispensable para entender cómo diversos procesos embriológicos y evolutivos suceden. Sin embargo, en la mayoría de los programas de investigación estas áreas permanecen aisladas. En un esfuerzo por crear un punto de integración entre el Evo-Devo y las ciencias de la complejidad, en este documento propongo que las dinámicas celulares de epitelios pueden tener comportamientos que se asemejan a los encontrados en sistemas complejos. Dichas dinámicas celulares, además de regular la densidad celular de los epitelios, pueden conferir alta evolucionabilidad a estos tejidos. Para lograr este objetivo, utilizo como sistema el desarrollo del primer segmento tarsal de las patas anteriores de Drosophila melanogaster. Primero doy un ejemplo en el cual dinámicas aleatorias a nivel celular pueden generar la emergencia de patrones organizados a nivel del tejido. En seguida muestro como la modificación de características morfológicas del epitelio puede generar dinámicas celulares altamente organizadas o por el contrario aleatorios. Como resultado, planteó que el desarrollo de los epitelios muestra rasgos de comportamientos complejos y propone que la retro-alimentación entre tensión mecánica y procesos celulares son básicos para entender cómo se desarrollan y evolucionan los organismos multicelulares. Estos estudios ponen en evidencia las bases mecánicas de procesos complejos que conectan diversos niveles de organización.


Gene, protein and cell interactions are vital for the development of a multicellular organism. As a result, complexity theory can be a fundamental tool to understand how diverse developmental and evolutionary processes occur. However, in most scientific programs these two fields are separated. In an effort to create a connection between the Evo-devo and complexity science, this article shows how the cell dynamics of epithelia can display behaviours with similar features to complex systems. Here, I propose that these cell dynamics, in addition to control cell density in epithelia, can provide high evolvability to this type of tissue. To achieve this goal, I used a as a systems the development of Drosophila melanogaster front legs. First, I provide an example in which order at the tissue level emerge from apparently random cell dynamics. Then, I show that small modifications in epithelial cellular components can produce highly organized or the opposite random cell dynamics. Therefore, this work shows that a developing epithelium displays signs of complex behaviours and I propose that the feedback between tension and cellular processes are key for understanding how multicellular organisms development and evolve. Such studies may reveal the mechanistic basis of complex processes that bridge several levels of organization.

6.
Acta biol. colomb ; 21(3): 509-519, set.-dic, 2016. ilus
Article in English | LILACS | ID: biblio-827629

ABSTRACT

Allometric studies measure the scaling changes between different body parts and these often have implications on understanding ecology and evolution. Although most work on allometry has described its importance during phenotypic evolution, few studies have focused on studying how entrenched developmental processes can affect allometric changes. To explore this problem, here we used the sex comb, a male-specific group of bristles with a spectacular morphological diversity among Drosophila species. By combining morphometric analysis in wild type and genetically perturbed Drosophila melanogaster and Drosophila species, we studied the allometric changes that occur in leg length and other bristle rows in concert with sex comb radiation. We show that bristle-developmental processes are important for understanding the allometric changes of Drosophila first tarsal segments. Different lines of evidence suggest that a complicated interaction between bristle spacing and movement are crucial for understanding the evolution of allometry in this system. As a result, this work shows that although the emergence of a new trait, the sex comb, can modify the allometric relationships, there is a hierarchy of ancestral developmental processes with respect to how easily they can be modified. As a result, the interconnection of developmental processes can bias the direction of morphological changes.


La alometría estudia los cambios de tamaño entre las diferentes partes del cuerpo de los seres vivos y sus implicaciones ecológicas y evolutivas. Aunque la mayoría de los estudios en esta área se han centrado en investigar la importancia de los cambios alométricos en la evolución fenótipica, pocos estudios han analizado como la interconexión de los diferentes procesos del desarrollo afectan dichos cambios de tamaño. Para investigar la relación entre los mecanismos de desarrollo y los cambios alométricos, utilizamos los peines sexuales de diferentes especies del género Drosophila. Dichas estructuras, constituidas por un grupo de sedas ubicadas en las patas anteriores de los machos, presentan una variedad morfológica sobresaliente durante la evolución. Por medio de análisis morfométricos entre diferentes especies de Drosophila, incluidas líneas de Drosophila melanogaster modificadas genéticamente, investigamos los cambios alométricos que ocurren en el tamaño de las patas y diferentes tipos de sedas como resultado de la radiación de los peines sexuales. En este trabajo presentamos evidencia que sugiere una interacción compleja entre los mecanismos del desarrollo encargados de definir la distancia entre las sedas y su movimiento. Además, mostramos que dichos mecanismos son fundamentales para entender cómo evoluciona la alometría en los segmentos tarsales. Aunque la emergencia de una nueva característica puede modificar las relaciones alométricas, los procesos ancestrales de desarrollo varían en su susceptibilidad de ser modificados. De igual forma, este trabajo muestra que la interconexión entre los diferentes procesos de desarrollo puede sesgar la dirección de los cambios morfológicos.

SELECTION OF CITATIONS
SEARCH DETAIL
...