Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(34): 24112-24128, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577093

ABSTRACT

Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.

2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768226

ABSTRACT

The quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The samples were produced in the form of films 115.6-118.8 µm in thickness using the solvent casting method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity and thermal stability) and functionality of the obtained biomaterials were investigated. PG has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and morphology of the films. All samples with PG had a more organized internal structure and higher melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively. Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon cancer) cells, thus advancing PHBV biomedical application potential.


Subject(s)
Polyesters , Polyhydroxyalkanoates , Polyesters/chemistry , Prodigiosin/pharmacology , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
3.
Pharmaceutics ; 14(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35456530

ABSTRACT

Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7-8 µm in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 × MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.

4.
Antibiotics (Basel) ; 10(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207011

ABSTRACT

Novel biodegradable and biocompatible formulations of "old" but "gold" drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.

5.
Carbohydr Polym ; 175: 55-62, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917900

ABSTRACT

New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials.


Subject(s)
Agar/chemistry , Anti-Infective Agents/chemistry , Food Packaging , Nanocomposites , Staphylococcus aureus
6.
Carbohydr Polym ; 165: 313-321, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28363555

ABSTRACT

New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents a good strategy for designing multifunctional biomaterials for potential biomedical applications.


Subject(s)
Alginates , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Zinc , Candida albicans/drug effects , Escherichia coli/drug effects , Glucuronic Acid , Hexuronic Acids , Microbial Sensitivity Tests , Nanocomposites , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...