Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
J Control Release ; 326: 63-74, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32580042

ABSTRACT

The immunosuppressive state of the tumor microenvironment diminishes the efficacy of dendritic cell (DC)-based cancer immunotherapy. Inhibitory immune checkpoint molecules expressed on tumor-infiltrating T lymphocytes, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) molecules are one of the main barriers in priming T cells by DCs. Therefore, it seems that blockade of such molecules facilitates the T cells activation by the DC vaccine. In this study, we intended to suppress the expression of CTLA-4 molecule on tumor-infiltrating T cells by siRNA-loaded chitosan-lactate (CL) nanoparticles to facilitate priming anti- tumor T cells by tumor lysate-loaded DC vaccine. Nanoparticles (NPs) have also provided an opportunity for specific drug delivery into the tumor site. CL NPs exhibited favorable physicochemical characteristics (size about 75 nm, polydispersive index<0.2, and a zeta potential about 14), which were associated with a high transfection rate and low toxicity. Moreover, the administration of anti-CTLA-4 siRNA-loaded NPs into CT26 and 4 T1 tumor -bearing mice led to the downregulation of CTLA-4 on tumor -infiltrating T cells, which was associated with tumor regression and increased mice survival. Moreover, while the treatment of tumor -bearing mice with DC vaccine had mild therapeutic outcomes, its combination with siRNA-loaded NPs may exhibit synergistic anti- tumor effects. This possible synergistic ameliorating effect is achieved through the reduction of immunosuppressive cells, the improved cytotoxicity of T lymphocytes, decreased inhibitory and increased inflammatory cytokines, and reduced angiogenesis and metastasis processes. These results indicate that the silencing of CTLA-4 can potentiate the T cell priming capacity of the DC vaccine, proposing a practical anti-cancer therapeutic approach.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Cancer Vaccines , Dendritic Cells , Immunotherapy , Neoplasms/therapy , Animals , Cell Line, Tumor , Mice
4.
Nanomedicine ; 29: 102240, 2020 10.
Article in English | MEDLINE | ID: mdl-32553948

ABSTRACT

Overexpression of adenosine in the tumor region leads to suppression of various immune cells, particularly T cells through ligation with adenosine 2a receptor (A2aR). In this study, we intended to increase the efficacy of tumor lysate-loaded DC vaccine by silencing the expression of A2aR on T cells through the application of A2aR-specific siRNA-loaded PEG-chitosan-lactate (PCL) nanoparticles (NPs) in the 4T1 breast tumor-bearing mice. Combination therapy by DC vaccine and siRNA-loaded NPs markedly induced tumor regression and increased survival time of mice. These ameliorative effects were partly via downregulation of immunosuppressive cells, increased function of cytotoxic T lymphocytes, and induction of immune-stimulatory cytokines. Moreover, combination therapy could markedly suppress angiogenesis and metastasis processes. These results imply the efficacy of novel combination therapy for the treatment of breast cancer by using A2aR siRNA-loaded NPs and DC vaccine which can be translated into the initial phase of clinical trials in the near future.


Subject(s)
Breast Neoplasms/therapy , Mammary Neoplasms, Animal/therapy , Nanoparticles/chemistry , Receptor, Adenosine A2A/genetics , Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/pharmacology , Cell Line, Tumor , Chitosan/chemistry , Chitosan/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Lactic Acid/chemistry , Lactic Acid/pharmacology , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
5.
Life Sci ; 249: 117499, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32142763

ABSTRACT

AIMS: Since several factors are involved in the tumorigenesis process, targeting only one factor most probably cannot overwhelm cancer progression. Therefore, it seems that combination therapy through targeting more than one cancer-related factor may lead to cancer control. The expression and function of p68 (DDX5; DEAD-Box Helicase 5) are dysregulated in various cancers. P68 is also a co-activator of many oncogenic transcription factors such as the signal transducer and activator of transcription-3 (STAT3), which contributes to cancer progression. This close connection between p68 and STAT3 plays an important role in the growth and development of cancer. MATERIALS AND METHODS: We decided to suppress the p68/STAT3 axis in various cancer cells by using Polyethylene glycol-trimethyl Chitosan-Hyaluronic acid (PEG-TMC-HA) nanoparticles (NPs) loaded with siRNA molecules. We assessed the impact of this combination therapy on apoptosis, proliferation, angiogenesis, and tumor growth, both in vitro and in vivo. KEY FINDINGS: The results showed that siRNA-loaded NPs notably suppressed the expression of p68/STAT3 axis in cancer cells, which was associated with blockade of tumor growth, colony formation, angiogenesis, and cancer cell migration. In addition to apoptosis induction, this combined therapy also reduced the expression of several tumor-promoting factors including Fibroblast growth factors (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-ß (TGF-ß), matrix metallopeptidases-2 (MMP-2), MMP-9, hypoxia-inducible factor-(HIF-1α), interleukin-6 (IL-6), IL-33, Bcl-x, vimentin, and snail. SIGNIFICANCE: These findings indicate the potential of this nano-based anti-cancer therapeutic strategy for efficient cancer therapy which should be further investigated in future studies.


Subject(s)
Gene Silencing , Neoplasms/pathology , STAT3 Transcription Factor/genetics , eIF-2 Kinase/genetics , Apoptosis , Cell Line, Tumor , Disease Progression , Humans , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...