Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Nat Methods ; 21(7): 1275-1287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811857

ABSTRACT

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.


Subject(s)
Neurons , Optogenetics , Optogenetics/methods , Animals , Neurons/physiology , Neurons/metabolism , Synaptic Transmission , Opsins/genetics , Opsins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Humans , Synapses/physiology , Synapses/metabolism
2.
Pflugers Arch ; 475(12): 1409-1419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987804

ABSTRACT

Optogenetics is a technology using light-sensitive proteins to control signaling pathways and physiological processes in cells and organs and has been applied in neuroscience, cardiovascular sciences, and many other research fields. Most commonly used optogenetic actuators are sensitive to blue and green light, but red-light activation would allow better tissue penetration and less phototoxicity. Cyp27c1 is a recently deorphanized cytochrome P450 enzyme that converts vitamin A1 to vitamin A2, thereby red-shifting the spectral sensitivity of visual pigments and enabling near-infrared vision in some aquatic species.Here, we investigated the ability of Cyp27c1-generated vitamin A2 to induce a shift in spectral sensitivity of the light-gated ion channel Channelrhodopsin-2 (ChR2) and its red-shifted homolog ReaChR. We used patch clamp to measure photocurrents at specific wavelengths in HEK 293 cells expressing ChR2 or ReaChR. Vitamin A2 incubation red-shifted the wavelength for half-maximal currents (λ50%) by 6.8 nm for ChR2 and 12.4 nm for ReaChR. Overexpression of Cyp27c1 in HEK 293 cells showed mitochondrial localization, and HPLC analysis showed conversion of vitamin A1 to vitamin A2. Notably, the λ50% of ChR2 photocurrents was red-shifted by 10.5 nm, and normalized photocurrents at 550 nm were about twofold larger with Cyp27c1 expression. Similarly, Cyp27c1 shifted the λ50% of ReaChR photocurrents by 14.3 nm and increased normalized photocurrents at 650 nm almost threefold.Since vitamin A2 incubation is not a realistic option for in vivo applications and expression of Cyp27c1 leads to a greater red-shift in spectral sensitivity, we propose co-expression of this enzyme as a novel strategy for red-shifted optogenetics.


Subject(s)
Optogenetics , Vitamin A , Humans , Vitamin A/metabolism , HEK293 Cells , Heart , Channelrhodopsins/genetics
3.
bioRxiv ; 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37425961

ABSTRACT

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

5.
Nat Commun ; 13(1): 7109, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402762

ABSTRACT

Carvedilol is among the most effective ß-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of ß1-adrenoceptors, arrestin-biased signalling via ß2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through ß2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the ß-adrenoceptor system.


Subject(s)
Adrenergic beta-Antagonists , Myocardial Infarction , Humans , Carvedilol/pharmacology , Adrenergic beta-Antagonists/pharmacology , Receptors, Adrenergic, beta-2/genetics , Myocardial Infarction/drug therapy
6.
Nat Commun ; 13(1): 1765, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365606

ABSTRACT

Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.


Subject(s)
Optogenetics , Signal Transduction , Animals , Humans , Light , Mammals , Signal Transduction/physiology , TRPC6 Cation Channel
7.
Cells ; 11(4)2022 02 16.
Article in English | MEDLINE | ID: mdl-35203340

ABSTRACT

Connexins (Cx) are a large family of membrane proteins that can form intercellular connections, so-called gap junctions between adjacent cells. Cx43 is widely expressed in mammals and has a variety of different functions, such as the propagation of electrical conduction in the cardiac ventricle. Despite Cx43 knockout models, many questions regarding the biology of Cx43 in health and disease remain unanswered. Herein we report the establishment of a Cre-inducible Cx43 overexpression system in murine embryonic stem (ES) cells. This enables the investigation of the impact of Cx43 overexpression in somatic cells. We utilized a double reporter system to label Cx43-overexpressing cells via mCherry fluorescence and exogenous Cx43 via fusion with P2A peptide to visualize its distribution pattern. We proved the functionality of our systems in ES cells, HeLa cells, and 3T3-fibroblasts and demonstrated the formation of functional gap junctions based on dye diffusion and FRAP experiments. In addition, Cx43-overexpressing ES cells could be differentiated into viable cardiomyocytes, as shown by the formation of cross striation and spontaneous beating. Analysis revealed faster and more rhythmic beating of Cx43-overexpressing cell clusters. Thus, our Cx43 overexpression systems enable the investigation of Cx43 biology and function in cardiomyocytes and other somatic cells.


Subject(s)
Connexin 43 , Mouse Embryonic Stem Cells , Animals , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , HeLa Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism
12.
Front Physiol ; 12: 768495, 2021.
Article in English | MEDLINE | ID: mdl-34987414

ABSTRACT

G-protein signaling pathways are central in the regulation of cardiac function in physiological and pathophysiological conditions. Their functional analysis through optogenetic techniques with selective expression of opsin proteins and activation by specific wavelengths allows high spatial and temporal precision. Here, we present the application of long wavelength-sensitive cone opsin (LWO) in cardiomyocytes for activation of the Gi signaling pathway by red light. Murine embryonic stem (ES) cells expressing LWO were generated and differentiated into beating cardiomyocytes in embryoid bodies (EBs). Illumination with red light (625 nm) led to an instantaneous decrease up to complete inhibition (84-99% effectivity) of spontaneous beating, but had no effect on control EBs. By using increasing light intensities with 10 s pulses, we determined a half maximal effective light intensity of 2.4 µW/mm2 and a maximum effect at 100 µW/mm2. Pre-incubation of LWO EBs with pertussis toxin completely inhibited the light effect proving the specificity for Gi signaling. Frequency reduction was mainly due to the activation of GIRK channels because the specific channel blocker tertiapin reduced the light effect by ~80%. Compared with pharmacological stimulation of M2 receptors with carbachol with slow kinetics (>30 s), illumination of LWO had an identical efficacy, but much faster kinetics (<1 s) in the activation and deactivation demonstrating the temporal advantage of optogenetic stimulation. Thus, LWO is an effective optogenetic tool for selective stimulation of the Gi signaling cascade in cardiomyocytes with red light, providing high temporal precision.

13.
Front Physiol ; 10: 498, 2019.
Article in English | MEDLINE | ID: mdl-31105593

ABSTRACT

Cardiac defibrillation to terminate lethal ventricular arrhythmia (VA) is currently performed by applying high energy electrical shocks. In cardiac tissue, electrical shocks induce simultaneously de- and hyperpolarized areas and only depolarized areas are considered to be responsible for VA termination. Because electrical shocks do not allow proper control over spatial extent and level of membrane potential changes, the effects of hyperpolarization have not been explored in the intact heart. In contrast, optogenetic methods allow cell type-selective induction of de- and hyperpolarization with unprecedented temporal and spatial control. To investigate effects of cardiomyocyte hyperpolarization on VA termination, we generated a mouse line with cardiomyocyte-specific expression of the light-driven proton pump ArchT. Isolated cardiomyocytes showed light-induced outward currents and hyperpolarization. Free-running VA were evoked by electrical stimulation of explanted hearts perfused with low K+ and the KATP channel opener Pinacidil. Optogenetic hyperpolarization was induced by epicardial illumination, which terminated VA with an average efficacy of ∼55%. This value was significantly higher compared to control hearts without illumination or ArchT expression (p = 0.0007). Intracellular recordings with sharp electrodes within the intact heart revealed hyperpolarization and faster action potential upstroke upon illumination, which should fasten conduction. However, conduction speed was lower during illumination suggesting enhanced electrical sink by hyperpolarization underlying VA termination. Thus, selective hyperpolarization in cardiomyocytes is able to terminate VA with a completely new mechanism of increased electrical sink. These novel insights could improve our mechanistic understanding and treatment strategies of VA termination.

14.
Nat Commun ; 10(1): 1281, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894542

ABSTRACT

The standard technique for investigating adrenergic effects on heart function is perfusion with pharmaceutical agonists, which does not provide high temporal or spatial precision. Herein we demonstrate that the light sensitive Gs-protein coupled receptor JellyOp enables optogenetic stimulation of Gs-signaling in cardiomyocytes and the whole heart. Illumination of transgenic embryonic stem cell-derived cardiomyocytes or of the right atrium of mice expressing JellyOp elevates cAMP levels and instantaneously accelerates spontaneous beating rates similar to pharmacological ß-adrenergic stimulation. Light application to the dorsal left atrium instead leads to supraventricular extrabeats, indicating adverse effects of localized Gs-signaling. In isolated ventricular cardiomyocytes from JellyOp mice, we find increased Ca2+ currents, fractional cell shortening and relaxation rates after illumination enabling the analysis of differential Gs-signaling with high temporal precision. Thus, JellyOp expression allows localized and time-restricted Gs stimulation and will provide mechanistic insights into different effects of site-specific, long-lasting and pulsatile Gs activation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Heart Atria/metabolism , Heart Ventricles/metabolism , Light Signal Transduction , Myocytes, Cardiac/metabolism , Optogenetics/methods , Animals , Calcium/metabolism , Cations, Divalent , Cell Differentiation , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Atria/cytology , Heart Atria/radiation effects , Heart Ventricles/cytology , Heart Ventricles/radiation effects , Light , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/radiation effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/radiation effects
15.
Nat Chem Biol ; 14(8): 764-767, 2018 08.
Article in English | MEDLINE | ID: mdl-30013061

ABSTRACT

L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic ß-cell function and cardiac activity under optical control.


Subject(s)
Calcium Channels, L-Type/metabolism , Diltiazem/pharmacology , Fluorescent Dyes/pharmacology , Heart/drug effects , Insulin-Secreting Cells/drug effects , Optical Imaging , Calcium Channels, L-Type/chemistry , Diltiazem/chemistry , Fluorescent Dyes/chemistry , Humans , Insulin-Secreting Cells/metabolism , Light , Photochemical Processes
16.
Int J Mol Sci ; 18(12)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29211031

ABSTRACT

Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na⁺, Ca2+ and K⁺ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.


Subject(s)
High-Throughput Screening Assays/methods , Membrane Transport Modulators/toxicity , Myocytes, Cardiac/drug effects , Optogenetics/methods , Toxicity Tests/methods , Action Potentials , Cardiotoxicity , Cell Line , High-Throughput Screening Assays/instrumentation , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Ion Channels/metabolism , Myocytes, Cardiac/physiology , Optogenetics/instrumentation , Toxicity Tests/instrumentation
17.
Sci Rep ; 7(1): 9629, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851973

ABSTRACT

Side effects on cardiac ion channels are one major reason for new drugs to fail during preclinical evaluation. Herein we propose a simple optogenetic screening tool measuring extracellular field potentials (FP) from paced cardiomyocytes to identify drug effects over the whole physiological heart range, which is essential given the rate-dependency of ion channel function and drug action. Human induced pluripotent stem cell-derived cardiomyocytes were transduced with an adeno-associated virus to express Channelrhodopsin2 and plated on micro-electrode arrays. Global pulsed illumination (470 nm, 1 ms, 0.9 mW/mm2) was applied at frequencies from 1 to 2.5 Hz, which evoked FP simultaneously in all cardiomyocytes. This synchronized activation allowed averaging of FP from all electrodes resulting in one robust FP signal for analysis. Field potential duration (FPD) was ~25% shorter at 2.5 Hz compared to 1 Hz. Inhibition of hERG channels prolonged FPD only at low heart rates whereas Ca2+ channel block shortened FPD at all heart rates. Optogenetic pacing also allowed analysis of the maximum downstroke velocity of the FP to detect drug effects on Na+ channel availability. In principle, the presented method is well scalable for high content cardiac toxicity screening or personalized medicine for inherited cardiac channelopathies.


Subject(s)
Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Optogenetics/methods , Cells, Cultured , Channelrhodopsins/analysis , Channelrhodopsins/genetics , Dependovirus/genetics , Genes, Reporter , Genetic Vectors , Humans , Transduction, Genetic
18.
Stem Cell Reports ; 8(2): 305-317, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28089668

ABSTRACT

Subtype-specific human cardiomyocytes (CMs) are valuable for basic and applied research. Induction of cardiomyogenesis and enrichment of nodal-like CMs was described for mouse pluripotent stem cells (mPSCs) in response to 1-ethyl-2-benzimidazolinone (EBIO), a chemical modulator of small-/intermediate-conductance Ca2+-activated potassium channels (SKs 1-4). Investigating EBIO in human pluripotent stem cells (PSCs), we have applied three independent differentiation protocols of low to high cardiomyogenic efficiency. Equivalent to mPSCs, timed EBIO supplementation during hPSC differentiation resulted in dose-dependent enrichment of up to 80% CMs, including an increase in nodal- and atrial-like phenotypes. However, our study revealed extensive EBIO-triggered cell loss favoring cardiac progenitor preservation and, subsequently, CMs with shortened action potentials. Proliferative cells were generally more sensitive to EBIO, presumably via an SK-independent mechanism. Together, EBIO did not promote cardiogenic differentiation of PSCs, opposing previous findings, but triggered lineage-selective survival at a cardiac progenitor stage, which we propose as a pharmacological strategy to modulate CM subtype composition.


Subject(s)
Benzimidazoles/pharmacology , Calcium Channel Agonists/pharmacology , Cell Differentiation/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Biomarkers , Cell Differentiation/genetics , Cell Line , Cell Lineage , Cell Survival/drug effects , Cells, Cultured , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mesoderm/cytology , Mesoderm/drug effects , Mesoderm/embryology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism
19.
Nat Commun ; 7: 13344, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27882934

ABSTRACT

Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1ß in DM mice. IL-1ß causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1ß-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1ß axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1ß as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Interleukin-1beta/immunology , Macrophages/immunology , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Tachycardia, Ventricular/immunology , Toll-Like Receptor 2/immunology , Action Potentials , Animals , Antirheumatic Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Caspase 1/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Inflammasomes/antagonists & inhibitors , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Mice, Transgenic , Myocardial Contraction , Myocytes, Cardiac/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Potassium/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/metabolism , Toll-Like Receptor 2/genetics
20.
Basic Res Cardiol ; 111(2): 14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26803770

ABSTRACT

Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Nav1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.


Subject(s)
Long QT Syndrome/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Cardiac Conduction System Disease , Cells, Cultured , Humans , Induced Pluripotent Stem Cells , Long QT Syndrome/genetics , Patch-Clamp Techniques , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...