Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(25): 17535-17546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828272

ABSTRACT

The biological synthesis of zinc oxide nanoparticles (ZnO NPs) from plant extracts has emerged as a novel method for producing NPs with great scalability and biocompatibility. The present study is focused on bio-fabricated zinc oxide nanomaterial characterization and investigation of its photocatalytic and antifungal activities. ZnO NPs were biosynthesized using the leaf extract of Polyalthia longifolia without using harmful reducing or capping chemicals, which demonstrated fungicidal activity against Fusarium oxysporum f. sp. ciceris. The results showed that the inhibition of the radial growth of F. oxysporum f. sp. ciceris was enhanced as the concentration increased from 100 ppm to 300 ppm. The effectiveness of the photocatalytic activity of biosynthesized ZnO NPs was analyzed using MB dye degradation in aqueous medium under ultraviolet (UV) radiation and natural sunlight. After four consecutive cycles, the photocatalytic degradation of MB was stable and was 84%, 83%, 83%, and 83%, respectively, during natural sunlight exposure. Under the UV sources, degradation reached 92%, 89%, 88%, and 87%, respectively, in 90 minutes. This study suggests that the ZnO NPs obtained from plant extract have outstanding photocatalytic and antifungal activities against F. oxysporum f. sp. ciceris and have the potential for application as a natural pest control agent to reduce pathogenesis.

2.
Plants (Basel) ; 12(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050187

ABSTRACT

Invasive alien species represent one of the main threats to biodiversity and species extinction. This is the case for the genus Prosopis, among which Prosopis velutina is the most invasive and common tree species along the Molopo River in the North-West Province, impacting native plant communities. However, its impact on the composition and diversity of native woody species remains poorly investigated in the area. Thus, this study aimed to assess the impact of P. velutina on native woody plant composition and diversity across three sites along the Molopo River. At each site, five quadrats of 20 × 20 m2 were randomly established in invaded and adjacent uninvaded stands. A comparative methodological approach was adopted, and the woody plants in invaded and uninvaded stands with similar site conditions were sampled. The results showed that native woody species density differed significantly (p < 0.05) between invaded and uninvaded stands, except for Bray sites, where there was a marginal difference (p = 0.6). The overall native woody species density decreased by 79.7% in the invaded stand. However, non-metric multidimensional scaling (nMDS) and analysis of similarity (ANOSIM) indicated significant differences in native tree composition between invaded and uninvaded stands at all sites. In all three sites, all ecological indices had significantly lower values in invaded stands compared to uninvaded stands. The decrease in all ecological indices in invaded over uninvaded stands indicated that P. velutina invasion reduced the diversity of native woody plant species. Due to the incessant spread of P. velutina, it may become a long-term dominant species with an increasing impact on the native vegetation. Therefore, the findings of this study call for urgent management and appropriate control measures against the ongoing spread of this invader within the riparian zones of the Molopo River in North-West Province.

3.
Nanomaterials (Basel) ; 12(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35215000

ABSTRACT

The key pathways for synthesizing nanoparticles are physical and chemical, usually expensive and possibly hazardous to the environment. In the recent past, the evaluation of green chemistry or biological techniques for synthesizing metal nanoparticles from plant extracts has drawn the attention of many researchers. The literature on the green production of nanoparticles using various metals (i.e., gold, silver, zinc, titanium and palladium) and plant extracts is discussed in this study. The generalized mechanism of nanoparticle synthesis involves reduction, stabilization, nucleation, aggregation and capping, followed by characterization. During biosynthesis, major difficulties often faced in maintaining the structure, size and yield of particles can be solved by monitoring the development parameters such as temperature, pH and reaction period. To establish a widely accepted approach, researchers must first explore the actual process underlying the plant-assisted synthesis of a metal nanoparticle and its action on others. The green synthesis of NPs is gaining attention owing to its facilitation of the development of alternative, sustainable, safer, less toxic and environment-friendly approaches. Thus, green nanotechnology using plant extract opens up new possibilities for the synthesis of novel nanoparticles with the desirable characteristics required for developing biosensors, biomedicine, cosmetics and nano-biotechnology, and in electrochemical, catalytic, antibacterial, electronics, sensing and other applications.

4.
J Zhejiang Univ Sci B ; 22(7): 563-574, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34269009

ABSTRACT

This study focused, for the first time, on the effect of ultrasonic features on the extraction efficiency of secondary metabolites in mustard seed cake (MSC). The nematostatic potential of sonicated seed cake was examined against the second-stage juveniles (J2s) of root-knot nematode, Meloidogyne javanica. The results show that a 35 ppm (parts per million) concentration of a sonicated extract (SE) sample of MSC caused 65% J2s mortality at 18 h exposure period in vitro. It also significantly suppressed the root-knot index (RKI=0.94) in tomato roots. The lethal concentration values for SE were 51.76, 29.79, and 13.34 ppm, respectively, at 6, 12, and 18 h of the exposure period, and the lethal concentration values for the non-sonicated extract (NSE) sample were 116.95, 76.38, and 55.59 ppm, respectively, at similar exposure time. Sinapine and gluconapin were identified as the major compounds in ultrasonic-assisted MSC. Because of the high extraction efficiency of metabolites in the SE, all treatments of SE were shown to be antagonistic to J2s. Thus, this study of ultrasonication activity-based profiling of MSC may help generate target-based compounds at a scale relevant to the control of disease caused by nematodes in economic crops.


Subject(s)
Choline/analogs & derivatives , Crops, Agricultural , Glucosinolates/analysis , Mustard Plant/metabolism , Plant Roots/metabolism , Seeds/metabolism , Tylenchoidea/physiology , Animals , Choline/analysis , Chromatography, Liquid , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Microscopy, Electron, Scanning , Plant Roots/parasitology , Seeds/chemistry , Solvents , Sonication , Spectrometry, Mass, Electrospray Ionization , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...