Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170353, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296076

ABSTRACT

Microplastics (MPs) are known for their ubiquity, having been detected in virtually any environmental compartment. However, indoor MPs concentrations are poorly studied despite being closely related to human exposure. The present study aims to evaluate the presence of MPs in settled atmospheric dust in 60 houses distributed in 12 districts of the metropolitan city of Lima, Peru, and investigate the influence of their geographical location and house characteristics. MPs concentration ranged from 0.01 to 33.9 MPs per mg of dust. Fibers and blue were the most frequent shape and color (98 % and 69 %, respectively). Also, 82 % of the particles were between 500 µm - 5 mm in size. A higher concentration of MPs was identified in the center-south of the city. The houses located on the highest floors (levels 4 to 13 to ground) displayed higher concentrations. MPs were primarily composed of polyester (PET), polypropylene (PP), and ethylene-vinyl acetate (EVA), among others. The polymers identified suggest that MPs derived from the fragmentation of components frequently found in houses, such as synthetic clothing, food storage containers, toys, carpets, floors, and curtains. The incorporation of MPs from the outside into dwellings is not ruled out. Future studies should evaluate the influence of consumption habits and housing characteristics on the abundance of MPs.


Subject(s)
Microplastics , Plastics , Humans , Dust , Food Packaging , Food Storage , Environmental Monitoring
2.
Sci Total Environ ; 901: 165788, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37524177

ABSTRACT

Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.

3.
Environ Res ; 216(Pt 4): 114738, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36400216

ABSTRACT

Plastic pollution in seafood has become a worldwide safety concern due to its possible harm to humans. This is the first study which has investigated the length-weight relationship, growth patterns and condition factor, together with the concentrations of microplastics (MPs) and mesoplastics (MesoPs) in Pleoticus muelleri from the Bahia Blanca Estuary (BBE), Argentina. Forty-nine individuals were collected from three sampling stations in the BBE, and each abdominal muscle with the gastrointestinal tract was analyzed. P. muelleri showed an isometric growth pattern (b = 3.0054) with values of K similar among the individuals collected (ranged between 0.80 and 0.91), considering them in good condition compared to other crustacean species around the world. 96% of shrimp presented transparent or black synthetic fibers as prevalent types, with an abundance average of (3.0 ± 2.90) MPs/g w. w. And (0.053 ± 0.16) MesoPs/g w. w. as well as a dominant size range of 0.5-1.5 mm, in accordance with recent studies in the same area. The linear regression analysis showed that K was independent of the concentration of MPs ingested by P. muelleri, with R2 ranging between 0.024 and 0.194 indicating that MPs contamination does not affect the nutritional condition of shrimp. SEM/EDX detected the presence of elements like C, O, K, and Mg, tissue residues and fractures on the surface of the analyzed fibers. FTIR confirmed different types of polymers in shrimp related to textile fabrics probably from untreated sewage discharges from nearby cities. The results of this research provide useful information for a better understanding of MPs contamination in seafood, suggesting P. muelleri as a suitable species for monitoring MPs in estuarine ecosystems. Likewise, more research is required to know the effects of MPs on food safety in humans.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Ecosystem , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Seafood/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...