Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340665

ABSTRACT

Chronic disease patients (cancer, arthritis, cardiovascular diseases) undergo long-term systemic drug treatment. Membrane transporters in ocular barriers could falsely recognize these drugs and allow their trafficking into the eye from systemic circulation. Hence, despite their pharmacological activity, these drugs accumulate and cause toxicity at the non-target site, such as the eye. Since around 40% of clinically used drugs are organic cation in nature, it is essential to understand the role of organic cation transporter (OCT1) in ocular barriers to facilitate the entry of systemic drugs into the eye. We applied machine learning techniques and computer simulation models (molecular dynamics and metadynamics) in the current study to predict the potential OCT1 substrates. Artificial intelligence models were developed using a training dataset of a known substrates and non-substrates of OCT1 and predicted the potential OCT1 substrates from various systemic drugs causing ocular toxicity. Computer simulation studies was performed by developing the OCT1 homology model. Molecular dynamic simulations equilibrated the docked protein-ligand complex. And metadynamics revealed the movement of substrates across the transporter with minimum free energy near the binding pocket. The machine learning model showed an accuracy of about 80% and predicted the potential substrates for OCT1 among systemic drugs causing ocular toxicity - not known earlier, such as cyclophosphamide, bupivacaine, bortezomib, sulphanilamide, tosufloxacin, topiramate, and many more. However, further invitro and invivo studies are required to confirm these predictions.Communicated by Ramaswamy H. Sarma.

2.
J Vis Exp ; (183)2022 05 06.
Article in English | MEDLINE | ID: mdl-35604145

ABSTRACT

A posterior segment eye disease like diabetic retinopathy alters the physiology of the retina. Diabetic retinopathy is characterized by a retinal detachment, breakdown of the blood-retinal barrier (BRB), and retinal angiogenesis. An in vivo rat model is a valuable experimental tool to examine the changes in the structure and function of the retina. We propose three different experimental techniques in the rat model to identify morphological changes of retinal cells, retinal vasculature, and compromised BRB. Retinal histology is used to study the morphology of various retinal cells. Also, quantitative measurement is performed by retinal cell count and thickness measurement of different retinal layers. A BRB breakdown assay is used to determine the leakage of extraocular proteins from the plasma to vitreous tissue due to the breakdown of BRB. Fluorescence angiography is used to study angiogenesis and leakage of blood vessels by visualizing retinal vasculature using FITC-dextran dye.


Subject(s)
Diabetic Retinopathy , Animals , Blood-Retinal Barrier/pathology , Diabetic Retinopathy/diagnostic imaging , Fluorescein Angiography , Rats , Retina/metabolism , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology
3.
J Biomater Sci Polym Ed ; 33(1): 110-136, 2022 01.
Article in English | MEDLINE | ID: mdl-34464232

ABSTRACT

The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Excipients/pharmacology , Humans , Pandemics , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...