Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299832

ABSTRACT

One of the main challenges in the development of a plasma diagnostic and control system for DEMO is the need to cope with unprecedented radiation levels in a tokamak during long operation periods. A list of diagnostics required for plasma control has been developed during the pre-conceptual design phase. Different approaches are proposed for the integration of these diagnostics in DEMO: in equatorial and upper ports, in the divertor cassette, on the inner and outer surfaces of the vacuum vessel and in diagnostic slim cassettes, a modular approach developed for diagnostics requiring access to the plasma from several poloidal positions. According to each integration approach, diagnostics will be exposed to different radiation levels, with a considerable impact on their design. This paper provides a broad overview of the radiation environment that diagnostics in DEMO are expected to face. Using the water-cooled lithium lead blanket configuration as a reference, neutronics simulations were performed for pre-conceptual designs of in-vessel, ex-vessel and equatorial port diagnostics representative of each integration approach. Flux and nuclear load calculations are provided for several sub-systems, along with estimations of radiation streaming to the ex-vessel for alternative design configurations. The results can be used as a reference by diagnostic designers.

2.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112274

ABSTRACT

Providing energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical issues that need to be addressed. Plasma Position Reflectometry (PPR) is expected to have an important role in next-generation fusion machines, such as DEMO, as a diagnostic to monitor the position and shape of the plasma continuously, complementing magnetic diagnostics. The reflectometry diagnostic uses radar science methods in the microwave and millimetre wave frequency ranges and is envisaged to measure the radial edge density profile at several poloidal angles providing data for the feedback control of the plasma position and shape. While significant steps have already been given to accomplish that goal, with proof of concept tested first in ASDEX-Upgrade and afterward in COMPASS, important, ground-breaking work is still ongoing. The Divertor Test Tokamak (DTT) facility presents itself as the appropriate future fusion device to implement, develop, and test a PPR system, thus contributing to building a knowledge database in plasma position reflectometry required for its application in DEMO. At DEMO, the PPR diagnostic's in-vessel antennas and waveguides, as well as the magnetic diagnostics, may be exposed to neutron irradiation fluences 5 to 50 times greater than those experienced by ITER. In the event of failure of either the magnetic or microwave diagnostics, the equilibrium control of the DEMO plasma may be jeopardized. It is, therefore, imperative to ensure that these systems are designed in such a way that they can be replaced if necessary. To perform reflectometry measurements at the 16 envisaged poloidal locations in DEMO, plasma-facing antennas and waveguides are needed to route the microwaves between the plasma through the DEMO upper ports (UPs) to the diagnostic hall. The main integration approach for this diagnostic is to incorporate these groups of antennas and waveguides into a diagnostics slim cassette (DSC), which is a dedicated complete poloidal segment specifically designed to be integrated with the water-cooled lithium lead (WCLL) breeding blanket system. This contribution presents the multiple engineering and physics challenges addressed while designing reflectometry diagnostics using radio science techniques. Namely, short-range dedicated radars for plasma position and shape control in future fusion experiments, the advances enabled by the designs for ITER and DEMO, and the future perspectives. One key development is in electronics, aiming at an advanced compact coherent fast frequency sweeping RF back-end [23-100 GHz in few µs] that is being developed at IPFN-IST using commercial Monolithic Microwave Integrated Circuits (MMIC). The compactness of this back-end design is crucial for the successful integration of many measurement channels in the reduced space available in future fusion machines. Prototype tests of these devices are foreseen to be performed in current nuclear fusion machines.

3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890815

ABSTRACT

In a Heavy Ion Beam Diagnostic (HIBD), the plasma potential is obtained by measuring the energy of the secondary ions resulting from beam-plasma collisions by an electrostatic energy analyzer with split-plate detector (SPD), which relates the secondary ion beam energy variation to its position determined by the difference in currents between the split plates. Conventionally, the data from SPD are analyzed with the assumption that the secondary beam current is uniform. However, the secondary beam presents an effective projection of the primary beam, the current of which, as a rule, has a bell-like non-uniform profile. This paper presents: (i) the general features of the secondary beam profile formation, considered in the simplistic approximation of the circular primary beam and the secondary ions that emerge orthogonal to the primary beam axis, (ii) details of spit-plate detection and the influence of the secondary beam non-uniformity on plasma potential measurements, (iii) supported experimental data from the tokamak ISTTOK HIBD for primary and secondary beam profiles and the SPD transfer characteristic, obtained for the 90° cylindrical energy analyzer (90° CEA) and (iv) the implementation of a multiple cell array detector (MCAD) with dedicated resolution for the measurements of secondary beam profile and MCAD operation in multi-split-plate detection mode for direct measurements of the SPD transfer characteristic.

SELECTION OF CITATIONS
SEARCH DETAIL
...