Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38765986

ABSTRACT

Background: Striatal Cholinergic Interneurons (CIN) are drivers of L-Dopa induced Dyskinesias (LID). However, what signaling pathways elicit aberrant CIN activity remains unclear. CIN express D2 and D5 receptors suggesting repeated activation of these receptors in response to L-Dopa could promote LID. While the role of D5 in this process has recently been probed, little is known about the role of D2. Method: Mice with CIN-specific D2 ablation (D2 CIN KO) underwent unilateral 6-OHDA lesion and chronic L-Dopa dosing, throughout which LID severity was quantified. The effect of D2 CIN KO on histological markers of LID severity and CIN activity were also quantified postmortem. Results: D2 CIN KO attenuated LID across L-Dopa doses, reduced expression of histological LID marker p-ERK, and prevented L-Dopa-induced increases in CIN activity marker p-rpS6 in the dorsolateral striatum. Conclusion: The activation of D2 specifically on CIN is a key driver of LID.

2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328253

ABSTRACT

Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that can protect from long-lasting effects of ELA are poorly understood. Serotonin 1A (5HT 1A ) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but if 5HT 1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT 1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10. We then tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In ELA-exposed females, adult swim stress exposure increased passive coping and despair-like behavior, corticosterone levels at baseline and after stress, and neuronal activity and corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus. ELA also reduced neurogenesis and increased microglia activation in the ventral dentate gyrus (DG) of the hippocampus - an important mediator of individual differences in stress susceptibility. These effects of ELA were specific to females, but not males, and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal 5HT 1A autoreceptor knockdown prevented ELA effects on stress reactivity and on neurogenesis and neuroinflammation in the DG, indicating that reducing 5HT 1A autoreceptors confers resilience to ELA. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in stress reactivity and ventral DG function across development, and identify 5HT 1A autoreceptors as potential targets to prevent these persistent effects of ELA.

3.
Transl Psychiatry ; 12(1): 306, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915071

ABSTRACT

Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.


Subject(s)
Adverse Childhood Experiences , Animals , Female , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Pregnancy , Psychopathology , Serotonin , Stress, Psychological/metabolism
4.
Commun Biol ; 4(1): 1071, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552196

ABSTRACT

L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson's Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson's Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson's Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa.


Subject(s)
Dopamine/metabolism , Dyskinesias/prevention & control , Hedgehog Proteins/metabolism , Levodopa/adverse effects , Parkinson Disease/physiopathology , Animals , Disease Models, Animal , Female , Male , Mice
5.
Front Neural Circuits ; 15: 665386, 2021.
Article in English | MEDLINE | ID: mdl-34093138

ABSTRACT

Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.


Subject(s)
Dopaminergic Neurons , Glutamic Acid , Dopamine , Nucleus Accumbens , Synapses
6.
Sci Rep ; 10(1): 4974, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32165689

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 10(1): 2542, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054879

ABSTRACT

The dopamine D5 receptor (D5R) is a Gαs-coupled dopamine receptor belonging to the dopamine D1-like receptor family. Together with the dopamine D2 receptor it is highly expressed in striatal cholinergic interneurons and therefore is poised to be a positive regulator of cholinergic activity in response to L-DOPA in the dopamine-depleted parkinsonian brain. Tonically active cholinergic interneurons become dysregulated during chronic L-DOPA administration and participate in the expression of L-DOPA induced dyskinesia. The molecular mechanisms involved in this process have not been elucidated, however a correlation between dyskinesia severity and pERK expression in cholinergic cells has been described. To better understand the function of the D5 receptor and how it affects cholinergic interneurons in L-DOPA induced dyskinesia, we used D5R knockout mice that were rendered parkinsonian by unilateral 6-OHDA injection. In the KO mice, expression of pERK was strongly reduced indicating that activation of these cells is at least in part driven by the D5 receptor. Similarly, pS6, another marker for the activity status of cholinergic interneurons was also reduced. However, mice lacking D5R exhibited slightly worsened locomotor performance in response to L-DOPA and enhanced LID scores. Our findings suggest that D5R can modulate L-DOPA induced dyskinesia and is a critical activator of CINs via pERK and pS6.


Subject(s)
Dopamine/metabolism , Dyskinesia, Drug-Induced/genetics , Levodopa/adverse effects , Receptors, Dopamine D5/genetics , Animals , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Dyskinesia, Drug-Induced/pathology , Humans , Interneurons/drug effects , Interneurons/metabolism , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Oxidopamine/pharmacology , Parkinson Disease/genetics , Parkinson Disease/pathology
8.
J Neurosci ; 37(49): 11930-11946, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29097596

ABSTRACT

We have previously shown that casein kinase 2 (CK2) negatively regulates dopamine D1 and adenosine A2A receptor signaling in the striatum. Ablation of CK2 in D1 receptor-positive striatal neurons caused enhanced locomotion and exploration at baseline, whereas CK2 ablation in D2 receptor-positive neurons caused increased locomotion after treatment with A2A antagonist, caffeine. Because both, D1 and A2A receptors, play major roles in the cellular responses to l-DOPA in the striatum, these findings prompted us to examine the impact of CK2 ablation on the effects of l-DOPA treatment in the unilateral 6-OHDA lesioned mouse model of Parkinson's disease. We report here that knock-out of CK2 in striatonigral neurons reduces the severity of l-DOPA-induced dyskinesia (LID), a finding that correlates with lowered pERK but unchanged pPKA substrate levels in D1 medium spiny neurons as well as in cholinergic interneurons. In contrast, lack of CK2 in striatopallidal neurons enhances LID and ERK phosphorylation. Coadministration of caffeine with a low dose of l-DOPA reduces dyskinesia in animals with striatopallidal knock-out to wild-type levels, suggesting a dependence on adenosine receptor activity. We also detect reduced Golf levels in the striatonigral but not in the striatopallidal knock-out in response to l-DOPA treatment.Our work shows, in a rodent model of PD, that treatment-induced dyskinesia and striatal ERK activation are bidirectionally modulated by ablating CK2 in D1- or D2-positive projection neurons, in male and female mice. The results reveal that CK2 regulates signaling events critical to LID in each of the two main populations of striatal neurons.SIGNIFICANCE STATEMENT To date, l-DOPA is the most effective treatment for PD. Over time, however, its efficacy decreases, and side effects including l-DOPA-induced dyskinesia (LID) increase, affecting up to 78% of patients within 10 years of therapy (Hauser et al., 2007). It is understood that supersensitivity of the striatonigral pathway underlies LID, however, D2 agonists were also shown to induce LID (Bezard et al., 2001; Delfino et al., 2004). Our work implicates a novel player in the expression of LID, the kinase CK2: knock-out of CK2 in striatonigral and striatopallidal neurons has opposing effects on LID. The bidirectional modulation of dyskinesia reveals a central role for CK2 in striatal physiology and indicates that both pathways contribute to LID.


Subject(s)
Casein Kinase II/physiology , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dyskinesia, Drug-Induced/metabolism , Receptors, Dopamine D1/biosynthesis , Receptors, Dopamine D2/biosynthesis , Animals , Casein Kinase II/deficiency , Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Dopaminergic Neurons/drug effects , Dyskinesia, Drug-Induced/genetics , Female , Gene Expression , Levodopa/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/genetics
9.
Synapse ; 70(7): 293-301, 2016 07.
Article in English | MEDLINE | ID: mdl-26990537

ABSTRACT

Cocaine's enhancement of dopamine signaling is crucial for its rewarding effects but its serotonergic effects are also relevant. Here we examined the role of the protein p11, which recruits serotonin 5HT1B and 5HT4 receptors to the cell surface, in cocaine reward. For this purpose we tested wild-type (WT) and p11 knockout (KO) male and female mice for cocaine conditioned place preference (CPP) and its cocaine-induced reinstatement at different abstinence times, after 8 days of extinction and 28 days of being home-caged. All mice showed significant cocaine CPP. Among males, p11KO showed lower CPP than WT; this difference was also evident after 28 days of home-cage abstinence. In contrast, in females there were no CPP differences between p11KO and WT mice at any time point tested. Cocaine priming after the 28-day home-cage abstinence period also resulted in lower cocaine conditioned motor activity in both male and female p11KO mice. These results suggest that cocaine CPP and its persistence during extinction and reinstatement are modulated in a sex-differentiated manner by p11. The lack of protein p11 confers protection from CPP on male, but not female mice, immediately after cocaine conditioning as well as after prolonged abstinence, but not after short-term withdrawal. Synapse 70:293-301, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Annexin A2/genetics , Cocaine/pharmacology , Conditioning, Classical , Dopamine Uptake Inhibitors/pharmacology , S100 Proteins/genetics , Animals , Annexin A2/metabolism , Extinction, Psychological , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity , Repetition Priming , Reward , S100 Proteins/metabolism , Sex Factors
10.
J Caffeine Res ; 4(4): 109-113, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25538863

ABSTRACT

Background: Sex differences in cocaine abuse are well established. Females have a higher sensitivity and thus higher vulnerability to cocaine abuse compared to males. There are many studies showing that sensitivity to cocaine reward varies during the estrus cycle. Methods: Vaginal smears were examined through a DIFF staining kit and viewed through a microscope to determine the estrus cycle stage. Smears were taken immediately before and after cocaine and/or caffeine injections. Furthermore, we suggest a new tool to analyze the estrus cycle by using electrical resistance of the vaginal mucosa. Results: In the present study, we discovered that cocaine directly induced changes in the estrus cycle. Interestingly, caffeine did not affect the estrus cycle and nor did the combination of cocaine and caffeine. We observed that caffeine blocked the cocaine-induced estrus cycle changes using conventional exfoliate cytology. Therefore, caffeine may have neuroprotective properties on the changes induced by cocaine. Conclusion: These phase changes in the estrus cycle may be the underlying cause of sex differences in cocaine addiction that can be blocked by caffeine. Thus, we propose a valuable insight into sex differences in cocaine abuse and reveal a possible treatment with antagonizing the adenosine system.

11.
J Caffeine Res ; 4(2): 35-40, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-25054079

ABSTRACT

Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...