Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e33031, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988540

ABSTRACT

With the development of the technical trend, concrete using waste alternate material instead of sand material found economic potential for good structural behaviour. Besides, the susceptible crack, low strength-to-weight ratio, and low compressive strength are the reasons for shrinkage. Due to this reason, the investigation aims to limit the shrinkage under live load and increase the compression and flexural strength by the introduction of coconut waste chopped fiber (wCF), waste fly ash (wFA), and carbon nanotube powder (CNT) blended with conventional Portland paste. The developed concrete consists of 5 wt% wCF, 10 wt% wFA, and 0, 5, 10, and 15 wt% of CNT and is subjected to X-ray diffraction analysis, bulk density, compression and flexural strength, and water absorption studies. The X-ray diffraction pattern revealed the wCF, wFA, CNT, and matrix compositions. The concrete developed with 5 wt% wCF, 10 wt% wFA, and 15 wt% CNT cured within 28 days recorded maximum behaviour of compression strength (47 ± 1.8 MPa), flexural strength (4.9 ± 0.19 MPa), and water absorption of (2.8 ± 0.05 %).

2.
Heliyon ; 10(9): e30674, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765105

ABSTRACT

Concrete is the prime source, which fulfils the applications for construction in various forms. The prime roles of concrete industries are reducing material usage, enrichment of compressive strength, and flexural strength of concrete usage. This research focuses on recycling kaolin (mining waste) and silica fume, a great potential material for replacing coarse aggregate gravel stone and fine aggregate sand in conventional concrete as a hybrid. The developed concrete contained 5% nano alumina (Al2O3), 10% of kaolin waste (KW), and 5, 10, and 15% of silica fume (SF), and its behavior like compressive strength, flexural strength, water absorption, and acid attack behavior is studied. The molecular structure of crystalline is analyzed via X-ray diffraction (XRD). The 15% SF blended with 5% alumina and 10% KW cured within 28 and 90 days recorded high compressive and flexural strength (44 ± 1.76 MPa and 4.3 ± 0.17 MPa). XRD pattern proved their alumina, SF, and KW and found that the concrete blended with 5% alumina, 10% KW, and 15 wt% SF(90 days cured concrete) showed low water absorption (3.1 ± 0.12%). The effect of sulfuric acid behavior on weight reduction was 0.78% compared to CC1 (concrete cube without Al2O3, SF, and KW).

SELECTION OF CITATIONS
SEARCH DETAIL
...