Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 43(5): 423-437, 2016 May.
Article in English | MEDLINE | ID: mdl-32480473

ABSTRACT

Traits influencing plant water use eventually define the fitness of genotypes for specific rainfall environments. We assessed the response of several water use traits to vapour pressure deficit (VPD) in pearl millet (Pennisetum glaucum (L.) R.Br.) genotypes known to differ in drought adaptation mechanisms: PRLT 2/89-33 (terminal drought-adapted parent), H 77/833-2 (terminal drought-sensitive parent) and four near-isogenic lines introgressed with a terminal drought tolerance quantitative trait locus (QTL) from PRLT 2/89-33 (ICMR01029, ICMR01031, ICMR02042, and ICMR02044). Plant water use traits at various levels of plant organisation were evaluated in seven experiments in plants exposed either transiently or over the long term to different VPD regimes: biomass components, transpiration (water usage per time unit) and transpiration rate (TR) upon transient VPD increase (gH2Ocm-2h-1)), transpiration efficiency (g dry biomass per kg H2O transpired), leaf expansion rate (cm per thermal time unit) and root anatomy (endodermis dimensions)). High VPD decreased biomass accumulation by reducing tillering, the leaf expansion rate and the duration of leaf expansion; decreased root endodermis cell size; and increased TR and the rate of TR increase upon gradual short-term VPD increases. Such changes may allow plants to increase their water transport capacity in a high VPD environment and are genotype-specific. Some variation in water use components was associated with terminal drought adaptation QTL. Knowledge of water use traits' plasticity in growth environments that varied in evaporative demand, and on their genetic determinacy, is necessary to develop trait-based breeding approaches to complex constraints.

2.
Funct Plant Biol ; 41(11): 1019-1034, 2014 Oct.
Article in English | MEDLINE | ID: mdl-32481055

ABSTRACT

Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a 'stay-green' phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...