Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37960507

ABSTRACT

Introduction: Intra-abdominal pressure (IAP) monitoring is crucial for the detection and prevention of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS). In the 1970s, air-filled catheters (AFCs) for urodynamic studies were introduced as a solution to overcome the limitations of water-perfused catheters. Recent studies have shown that for correct IAP measurement with traditional AFC, the bladder needs to be primed with 25 mL of saline solution to allow pressure wave transmission to the transducer outside of the body, which limits continuous IAP monitoring. Methods: In this study, a novel triple balloon, air-filled TraumaGuard (TG) catheter system from Sentinel Medical Technologies (Jacksonville, FL, USA) with a unique balloon-in-balloon design was evaluated in a porcine and cadaver model of IAH via laparoscopy (IAPgold). Results: In total, 27 and 86 paired IAP measurements were performed in two pigs and one human cadaver, respectively. The mean IAPTG was 20.7 ± 10.7 mmHg compared to IAPgold of 20.3 ± 10.3 mmHg in the porcine study. In the cadaver investigation, the mean IAPTG was 15.6 ± 10.8 mmHg compared to IAPgold of 14.4 ± 10.4 mmHg. The correlation, concordance, bias, precision, limits of agreement, and percentage error were all in accordance with the WSACS (Abdominal Compartment Society) recommendations and guidelines for research. Conclusions: These findings support the use of the TG catheter for continuous IAP monitoring, providing early detection of elevated IAP, thus enabling the potential for prevention of IAH and ACS. Confirmation studies with the TraumaGuard system in critically ill patients are warranted to further validate these findings.


Subject(s)
Intra-Abdominal Hypertension , Humans , Animals , Swine , Intra-Abdominal Hypertension/diagnosis , Critical Illness , Catheters
2.
J Clin Med ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834904

ABSTRACT

Introduction: Intra-abdominal pressure (IAP) has been recognized as an important vital sign in critically ill patients. Due to the high prevalence and incidence of intra-abdominal hypertension in surgical (trauma, burns, cardiac) and medical (sepsis, liver cirrhosis, acute kidney injury) patients, continuous IAP (CIAP) monitoring has been proposed. This research was aimed at validating a new CIAP monitoring device, the TraumaGuard from Sentinel Medical Technologies, against the gold standard (height of a water column) in an in vitro setting and performing a comparative analysis among different CIAP measurement technologies (including two intra-gastric and two intra-bladder measurement devices). A technical and clinical guideline addressing the strengths and weaknesses of each device is provided as well. Methods: Five different CIAP measurement devices (two intra-gastric and three intra-vesical), including the former CiMON, Spiegelberg, Serenno, TraumaGuard, and Accuryn, were validated against the gold standard water column pressure in a bench-top abdominal phantom. The impacts of body temperature and bladder fill volume (for the intra-vesical methods) were evaluated for each system. Subsequently, 48 h of continuous monitoring (n = 2880) on top of intermittent IAP (n = 300) readings were captured for each device. Using Pearson's and Lin's correlations, concordance, and Bland and Altman analyses, the accuracy, precision, percentage error, correlation and concordance coefficients, bias, and limits of agreement were calculated for all the different devices. We also performed error grid analysis on the CIAP measurements to provide an overview of the involved risk level due to wrong IAP measurements and calculated the area under the curve and time above a certain IAP threshold. Lastly, the robustness of each system in tracking the dynamic variations of the raw IAP signal due to respirations and heartbeats was evaluated as well. Results: The TraumaGuard was the only technology able to measure the IAP with an empty artificial bladder. No important temperature dependency was observed for the investigated devices except for the Spiegelberg, which displayed higher IAP values when the temperature was increased, but this could be adjusted through recalibration. All the studied devices showed excellent ability for IAP monitoring, although the intra-vesical IAP measurements seem more reliable. In general, the TraumaGuard, Accuryn, and Serenno showed better accuracy compared to intra-gastric measurement devices. On average, biases of +0.71, +0.93, +0.29, +0.25, and -0.06 mm Hg were observed for the CiMON, Spiegelberg, Serenno, TraumaGuard, and Accuryn, respectively. All of the equipment showed percentage errors smaller than 25%. Regarding the correlation and concordance coefficients, the Serenno and TraumaGuard showed the best results (R2 = 0.98, p = 0.001, concordance coefficient of 99.5%). Error grid analysis based on the Abdominal Compartment Society guidelines showed a very low associated risk level of inappropriate treatment strategies due to erroneous IAP measurements. Regarding the dynamic tracings of the raw IAP signal, all the systems can track respiratory variations and derived parameters; however, the CiMON was slightly superior compared to the other technologies. Conclusions: According to the research guidelines of the Abdominal Compartment Society (WSACS), this in vitro study shows that the TraumaGuard can be used interchangeably with the gold standard for measuring continuous IAP, even in an empty artificial bladder. Confirmation studies with the TraumaGuard in animals and humans are warranted to further validate these findings.

3.
Life (Basel) ; 14(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38255643

ABSTRACT

OBJECTIVE: To compare bioelectrical impedance analysis (BIA)-derived parameters in healthy volunteers and critically ill patients and to assess its prognostic value in an ICU patient cohort. DESIGN: Retrospective, observational data analysis. SETTING: Single centre, tertiary-level ICU (Ziekenhuis Netwerk Antwerpen, ZNA Stuivenberg Hospital). PATIENTS: 101 patients and 101 healthy subjects, participants of International Fluid Academy Days. MEASUREMENTS AND MAIN RESULTS: Compared to healthy volunteers, both male and female ICU patients had significantly higher values for total body water (TBW), extracellular water (ECW), extracellular fluid (ECF), plasma, and interstitial fluid volumes. The phase angle was significantly lower and the malnutrition index was significantly higher in ICU patients, regardless of gender. Non-survivors in the ICU had significantly higher extracellular water content (ECW, 50.7 ± 5.1 vs. 48.9 ± 4.3%, p = 0.047) and accordingly significantly lower intracellular water (ICW, 49.2 ± 5.1 vs. 51.1 ± 4.3%, p = 0.047). The malnutrition index was also significantly higher in non-survivors compared to survivors (0.94 ± 0.17 vs. 0.87 ± 0.16, p = 0.048), as was the capillary leak index (ECW/ICW). CONCLUSIONS: Compared to healthy volunteers, this study observed a higher malnutrition index and TBW in ICU patients with an accumulation of fluids in the extracellular compartment. ICU non-survivors showed similar results, indicating that ICU patients and a fortiori non-survivors are generally overhydrated, with increased TBW and ECW, and more undernourished, as indicated by a higher malnutrition index.

4.
Anaesthesiol Intensive Ther ; 53(1): 10-17, 2021.
Article in English | MEDLINE | ID: mdl-33625819

ABSTRACT

INTRODUCTION: The non-invasive analysis of body fluid composition with bio-electrical impedance analysis (BIA) provides additional information allowing for more persona-lised therapy to improve outcomes. The aim of this study is to assess the prognostic value of fluid overload (FO) in the first week of intensive care unit (ICU) stay. MATERIAL AND METHODS: A retrospective, observational analysis of 101 ICU patients. Whole-body BIA measurements were performed, and FO was defined as a 5% increase in volume excess from baseline body weight. RESULTS: Baseline demographic data, including severity scores, were similar in both the fluid overload-positive (FO+, n = 49) patients and in patients without fluid overload (FO-, n = 52). Patients with FO+ had significantly higher cumulative fluid balance during their ICU stay compared to those without FO (8.8 ± 7.0 vs. 5.5 ± 5.4 litres; P = 0.009), VE (9.9 ± 6.5 vs. 1.5 ± 1.5 litres; P < 0.001), total body water (63.0 ± 9.5 vs. 52.8 ± 8.1%; P < 0.001), and extracellular water (27.0 ± 7.3 vs. 19.6 ± 3.7 litres; P < 0.001). The presence of 5%, 7.5%, and 10% fluid overload was directly associated with increased ICU mortality rates. The percentage fluid overload (P = 0.039) was an independent predictor for hospital mortality. CONCLUSIONS: A higher mortality rate in ICU-patients with FO was observed. FO is an independent prognostic factor because neither APACHE-II, SOFA, nor SAPS-II significantly differed on admission between survivors and non-survivors. Further research is needed to confirm these data prospectively and to evaluate whether BIA-guided deresuscitation in the subacute phase will improve mortality rates.


Subject(s)
Critical Illness , Intensive Care Units , Electric Impedance , Humans , Pilot Projects , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...