Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(22): 15099-15106, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37207093

ABSTRACT

The use of reactive diluents is undeniably of paramount importance to develop epoxy resins which would meet more demanding and restrictive processes and applications in terms of viscosity and glass transition temperature. In the context of developing resins with low carbon impacts, 3 natural phenols namely carvacrol, guaiacol and thymol were selected and converted into monofunctional epoxies using a general glycidylation procedure. Without advanced purification, the developed liquid-state epoxies showed very low viscosities of 16 cPs to 55 cPs at 20 °C, which could be further reduced to 12 cPs at 20 °C when purification by distillation is applied. The dilution effect of each reactive diluent on DGEBA's viscosity was also assessed for concentrations ranging from 5 to 20 wt% and compared to commercial and formulated DGEBA-based resin analogues. Interestingly, the use of these diluents reduced the initial viscosity of DGEBA by a factor of ten while maintaining glass transition temperatures above 90 °C. This article provides compelling evidence of the possibility of developing new sustainable epoxy resins with characteristics and properties that can be fine-tuned by only adjusting the reactive diluent concentration.

2.
ACS Sustain Chem Eng ; 11(15): 6021-6031, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37091125

ABSTRACT

Epoxy vitrimers encompass many advantages compared to traditional epoxy materials such as recyclability, repairability, and reprocessability. These properties are induced by the incorporation of dynamic reversible covalent bonds. Recently, the incorporation of aromatic disulfide bridges that are dynamic has expanded the development of new eco-friendly epoxy materials. Herein, we studied a bio-based aliphatic disulfide based on cystamine as a hardener with a vanillin-derived bio-sourced epoxy to prepare fully bio-based epoxy vitrimers. This article provides a comparative study between cystamine and an aromatic disulfide benchmark hardener issued from petrol resources. This work demonstrated that the presence of this aliphatic hardener has a significant influence not only on the reactivity, but most importantly on the resulting dynamic properties. An interesting yet counterintuitive accelerating effect of the dynamic exchanges was clearly demonstrated with only 2 to 20% of molar fraction of cystamine added to the aromatic disulfide formulation. A similar glass transition was obtained compared to the purely aromatic analogue, but relaxation times were decreased by an order of magnitude.

3.
Polymers (Basel) ; 12(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182799

ABSTRACT

Epoxy resins are widely used in the composite industry due to their dimensional stability, chemical resistance, and thermo-mechanical properties. However, these thermoset resins have important drawbacks. (i) The vast majority of epoxy matrices are based on non-renewable fossil-derived materials, and (ii) the highly cross-linked molecular architecture hinders their reprocessing, repairing, and recycling. In this paper, those two aspects are addressed by combining novel biobased epoxy monomers derived from renewable resources and dynamic crosslinks. Vanillin (lignin) and phloroglucinol (sugar bioconversion) precursors have been used to develop bi- and tri-functional epoxy monomers, diglycidyl ether of vanillyl alcohol (DGEVA) and phloroglucinol triepoxy (PHTE) respectively. Additionally, reversible covalent bonds have been incorporated in the network by using an aromatic disulfide-based diamine hardener. Four epoxy matrices with different ratios of epoxy monomers (DGEVA/PHTE wt%: 100/0, 60/40, 40/60, and 0/100) were developed and fully characterized in terms of thermal and mechanical properties. We demonstrate that their performances are comparable to those of commonly used fossil fuel-based epoxy thermosets with additional advanced reprocessing functionalities.

4.
Biomacromolecules ; 21(9): 3923-3935, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32790997

ABSTRACT

This work reports for the first time the copolymerization studies of 11 newly synthesized epoxidized vegetable oils (EVOs) that reacted with a disulfide-based aromatic dicarboxylic acid (DCA) to produce thermoset materials with recyclability properties. These new EVOs' reactivity and properties were compared with those of the two commercial references: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO). The structure-reactivity correlation is proposed by differential scanning calorimetry (DSC) analysis, corroborating the epoxy content of EVO monomers, the initiator effect, the copolymerization reaction enthalpy, and the temperature range. The thermomechanical properties of the obtained thermosets were evaluated and discussed in correlation with the structure and reactivity of monomers by dynamic mechanical analysis (DMA), tensile testing, and thermogravimetric analysis (TGA). It has been found that the higher the EVO functionality, the higher is the reactivity, cross-linking density, and final performances, with tan δ values ranging from 34 to 111 °C. This study investigates the chemical recycling and the solvent resistance of these vitrimer-like materials that have a high bio-based carbon content, from 58 to 79%, with potential application in coating or composite materials in the automotive sector.


Subject(s)
Linseed Oil , Plant Oils , Polymerization , Temperature , Tensile Strength
5.
RSC Adv ; 10(68): 41954-41966, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516529

ABSTRACT

Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations. In this context, this study focuses on the valorization of vegetable oils (VOs) into thermoset materials by using (i) epoxidation of the VOs through the "double bonds to epoxy" synthetic route and (ii) synthesis of crosslinked homopolymers by UV or hardener-free thermal curing processes. A thorough identification, selection and physico-chemical characterization of non-edible or non-valuated natural vegetable oils were performed. Selected VOs, characterized by a large range of double bond contents, were then chemically modified into epoxides thanks to an optimized, robust and sustainable method based on the use of acetic acid, hydrogen peroxide and Amberlite® IR-120 at 55 °C in toluene or cyclopentyl methyl ether (CMPE) as a non-hazardous and green alternative solvent. The developed environmentally friendly epoxidation process allows reaching almost complete double bond conversion with an epoxy selectivity above 94% for the 12 studied VOs. Finally, obtained epoxidized vegetable oils (EVOs), characterized by an epoxy index from 2.77 to 6.77 meq. g-1 were cured using either UV or hardener-free thermal curing. Both methods enable the synthesis of 100% biobased EVO thermoset materials whose thermomechanical performances were proved to linearly increase with the EVOs' epoxy content. This paper highlights that tunable thermomechanical performances (T α from -19 to 50 °C and T g from -34 to 36 °C) of EVO based thermoset materials can be reached by well selecting the starting VO raw materials.

6.
ACS Appl Bio Mater ; 3(11): 7550-7561, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019496

ABSTRACT

The end-of-life of thermoset materials is a real issue that confronts our society, and the strategy of introducing dynamic reversible bonds can be a sustainable solution to overcome this problem. This study shows an efficient way to produce biobased and recyclable thermosets, for a circular use. To reduce the production costs linked to energy and duration, an improved curing process is proposed by combining aromatic and aliphatic diacid hardeners containing dynamic S-S bonds. The work demonstrates the increased reactivity of epoxidized vegetable oil reacted with the two diacids. The structural evolutions during the exchange reactions that allow the recyclability were followed by Fourier transformed-infrared and nuclear magnetic resonance spectroscopies, high-performance liquid chromatography, and mass spectroscopy. The curing process was studied by differential scanning calorimetry and kinetic study.

7.
ACS Appl Bio Mater ; 3(11): 8094-8104, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019549

ABSTRACT

The preparation of thermosets based on epoxidized vegetable oils (EVOs) involved a peculiar attention in recent years; however, most of them cannot be recycled once cross-linked. In the present work, epoxy thermosetting resins like-vitrimers with dynamic disulfide covalent bonds were prepared by copolymerizing twelve EVOs with 2,2'-dithiodibenzoic acid, as hardener. Here, we show for the first time the reprocessability, repairability, and recyclability properties of EVOs thermosets. The 3R abilities were evaluated in correlation with the EVO epoxy contents, which influence the final thermo-mechanical properties of the recycled material. The virgin versus recycled materials' comparison was studied by FT-IR, DSC, TGA, and DMA, also comparing their swelling ability and high gel content. The study investigates, in addition, the excellent shape memory properties of the reprocessed EVOs/disulfide materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...