Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Phytochemistry ; 214: 113789, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482264

ABSTRACT

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Subject(s)
Breast Neoplasms , Isoflavones , Trifolium , Female , Humans , Trifolium/chemistry , Trifolium/metabolism , Isoflavones/pharmacology , Isoflavones/metabolism , Estrogens , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy
2.
Fitoterapia ; 156: 105016, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416305

ABSTRACT

The importance of Trifolium pratense L. as a dietary supplement and its use in traditional medicine prompted the preparation of a thorough metabolite profile. This included the identification and quantitation of principal constituents as well as low abundant metabolites that constitute the residual complexity (RC) of T. pratense bioactives. The purity and RC of isoflavonoid fractions from standardized red clover extract (RCE) was determined using an off-line combination of countercurrent separation (CCS) and two orthogonal analytical methodologies: quantitative 1H NMR spectroscopy with external calibration (EC-qHNMR) and LC-MS. A single-step hydrostatic CCS methodology (Centrifugal Partition Chromatography [CPC]) was developed that fractionated the isoflavonoids with a hexanes-ethyl acetate-methanol-water (HEMWat) 5.5/4.5/5/5, v/v solvent system (SS) into 75 fractions containing 3 flavonolignans, 2 isoflavonoid glycosides, as well as 17 isoflavonoids and related compounds. All metabolites were identified and quantified by qHNMR spectroscopy. The data led to the creation of a complete isoflavonoid profile to complement the biological evaluation. For example, fraction 69 afforded 90.5% w/w biochanin A (17), with 0.33% w/w of prunetin (16), and 0.76% w/w of maackiain (15) as residual components. Fraction 27 with 89.4% w/w formononetin (13) as the major component had, in addition, a residual complexity consisting of 3.37%, 0.73%, 0.68% w/w of pseudobaptigenin (11), kaempferol (10) and pratensein (8), respectively. Despite the relatively high resolving power of CPC, and not unexpectedly, the chromatographic fractions retained varying degrees of the original metabolomic diversity. Collectively, the extent of metabolomic diversity should be recognized and used to guide the development of isolation strategies, especially when generating samples for bioactivity evaluation. The simultaneous structural and quantitative characterization enabled by qNMR, supported by LC-MS measurements, enables the evaluation of a relatively large number of individual fractions and, thereby, advances both the chemical and biological evaluation of active principles in complex natural products.


Subject(s)
Flavonoids/analysis , Flavonoids/chemistry , Mass Spectrometry/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Trifolium/anatomy & histology , Trifolium/chemistry , Medicine, Traditional , Plants, Medicinal/anatomy & histology , Plants, Medicinal/chemistry
3.
Fitoterapia ; 152: 104878, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33757846

ABSTRACT

Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.


Subject(s)
Flavonoids/chemistry , Plant Extracts/chemistry , Trifolium/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Hydrolysis , Phytochemicals/chemistry , Phytoestrogens/chemistry , Plant Components, Aerial/chemistry , Solvents
4.
J Agric Food Chem ; 68(39): 10651-10663, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32945668

ABSTRACT

Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERß) activity can counterbalance estrogen receptor alpha (ERα)-mediated proliferation, thus providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERß-preferential structures, overall estrogenic activity, and ER subtype estrogenic activity of botanicals containing these (iso)flavonoids. Results showed that flavonoids with prenylation on C8 position increased estrogenic activity. C8-prenylated flavonoids with C2-C3 unsaturation resulted in increased ERß potency and selectivity [e.g., 8-prenylapigenin (8-PA), EC50 (ERß): 0.0035 ± 0.00040 µM], whereas 4'-methoxy or C3 hydroxy groups reduced activity [e.g., icaritin, EC50 (ERß): 1.7 ± 0.70 µM]. However, nonprenylated and C2-C3 unsaturated isoflavonoids showed increased ERß estrogenic activity [e.g., genistein, EC50 (ERß): 0.0022 ± 0.0004 µM]. Licorice (Glycyrrhiza inflata, [EC50 (ERα): 1.1 ± 0.20; (ERß): 0.60 ± 0.20 µg/mL], containing 8-PA, and red clover [EC50 (ERα): 1.8 ± 0.20; (ERß): 0.45 ± 0.10 µg/mL], with genistein, showed ERß-preferential activity as opposed to hops [EC50 (ERα): 0.030 ± 0.010; (ERß): 0.50 ± 0.050 µg/mL] and Epimedium sagittatum [EC50 (ERα): 3.2 ± 0.20; (ERß): 2.5 ± 0.090 µg/mL], containing 8-prenylnaringenin and icaritin, respectively. Botanicals with ERß-preferential flavonoids could plausibly contribute to ERß-protective benefits in menopausal women.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Epimedium/chemistry , Estrogen Receptor alpha/chemistry , Estrogen Receptor beta/chemistry , Estrogens/chemistry , Estrogens/metabolism , Glycyrrhiza/chemistry , Humans , Humulus/chemistry , Prenylation , Structure-Activity Relationship
5.
J Chromatogr A ; 1605: 360277, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31307793

ABSTRACT

Starting with an isoflavone-rich red clover extract (RCE), this study expands on the DESIGNER approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources using countercurrent separation (CCS) methodology. A hydrostatic CCS (also known as centrifugal partition chromatography, CPC) technique was used to enrich and deplete selected bioactive isoflavones of RCE extracts. In order to efficiently prepare large enough DESIGNER extracts from RCE for biological testing including in vivo assays, it was necessary to choose a balance between resolution and a loading capacity of at least 1 g per separation for the selected solvent system (SS). Adding 3 mL of DMSO to the sample containing equal amounts of upper and lower phases of hexanes-ethyl acetate-methanol-water (HEMWat 5.5/4.5/5/5, v/v) allowed 1 g of RCE to be dissolved in the sample without disrupting the chromatographic resolution of the target isoflavones. CPC experiments using other solubility modifiers, acetone and acetonitrile indicated that these modifiers increase solubility significantly, even better than DMSO, but the separation of target compounds was sufficiently disturbed to be unacceptable for producing the desired DESIGNER extracts. The preparation of DESIGNER extracts was achieved with two sequential CPC separations. The first produced a biochanin A enriched fraction (93.60% w/w) with only small amounts of other isoflavones: 2.30% w/w prunetin, 1.17% w/w formononetin, and 0.12% w/w irilone. Gravimetric investigations of this step demonstrated the high efficiency of CCS technology for full and unbiased sample recovery, confirmed experimentally to be 99.80%. A formononetin enriched fraction from this first separation was re-chromatographed on a more polar HEMWat (4/6/4/6, v/v) SS to produce a formononetin enriched DESIGNER fraction of 94.70% w/w purity. The presence of the minor (iso)flavonoids: 3.16% w/w pseudobaptigenin, 0.39% w/w kaempferol, and 0.31% w/w genistein was also monitored in these fractions. Chromatographic fractions, combined fractions, and DESIGNER extracts were analyzed with quantitative 1H NMR (qHNMR) spectroscopy which provided purity information, quantitation, and structural identification of the components.


Subject(s)
Countercurrent Distribution , Plant Extracts/isolation & purification , Trifolium/chemistry , Flavonoids/analysis , Flavonoids/isolation & purification , Genistein/chemistry , Genistein/isolation & purification , Hexanes/chemistry , Isoflavones/chemistry , Isoflavones/isolation & purification , Methanol/chemistry , Plant Extracts/chemistry , Solvents/chemistry
6.
J Ethnopharmacol ; 238: 111865, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30981705

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The flowering tops of Trifolium pratense L., popularly known as red clover, are used in ethnic Western and Traditional Chinese medicine, in a variety of preparations, including infusions, decoctions and tinctures. Red clover has been reported to be helpful for treatment of menopausal symptoms, premenstrual syndrome, mastalgia, high cholesterol, and other conditions. AIMS OF THE STUDY: The aims were to compare the chemical dynamics between traditional preparations of infusions, decoctions, and tinctures, as well as to identify the chemical variability over time in a traditional red clover tincture. For this purpose, eight isoflavone aglycones as well as two glucosides, ononin and sissotrin, were used as marker compounds. MATERIALS AND METHODS: Quantitative NMR (qHNMR), LC-MS-MS, and UHPLC-UV methods were used to identify and quantitate the major phenolic compounds found within each extract. RESULTS: Infusions, decoctions and tinctures were shown to produce different chemical profiles. Biochanin A and formononetin were identified and quantified in infusion, decoction, and tinctures of red clover. Both infusion and decoction showed higher concentrations of isoflavonoid glucosides, such as ononin and sissotrin, than 45% ethanolic tinctures. Dynamic chemical variability ("dynamic residual complexity") of the red clover tincture was observed over time (one-month), with biochanin A and formononetin reaching peak concentrations at around six days. CONCLUSIONS: Insight was gained into why different formulation methods (infusions, decoctions, and tinctures) are traditionally used to treat different health conditions. Moreover, the outcomes show that tinctures, taken over a period of time, are dynamic medicinal formulations that allow for time-controlled release of bioactive compounds.


Subject(s)
Glucosides/analysis , Isoflavones/analysis , Plant Preparations/chemistry , Trifolium , Flowers , Medicine, Traditional , Metabolome , Phytochemicals/analysis
7.
PLoS One ; 14(1): e0210182, 2019.
Article in English | MEDLINE | ID: mdl-30608952

ABSTRACT

Several novel bisbenzylisoquinoline alkaloids (BBIQAs) have recently been isolated from a Matis tribe arrow poison and shown by two-electrode voltage-clamp to inhibit mouse muscle nicotinic acetylcholine receptors (nAChR). Here, using radioligand assay with Aplysia californica AChBP and radioiodinated α-bungarotoxin ([125I]-αBgt), we show that BBIQA1, BBIQA2, and d-tubocurarine (d-TC) have similar affinities to nAChR orthosteric site. However, a competition with [125I]-αBgt for binding to the Torpedo californica muscle-type nAChR revealed that BBIQAs1, 2, and 3 are less potent (IC50s = 26.3, 8.75, and 17.0 µM) than d-TC (IC50 = 0.39 µM), while with α7 nAChR in GH4C1 cells, BBIQA1 was less potent that d-TC (IC50s = 162 µM and 7.77 µM, respectively), but BBIQA2 was similar (IC50 = 5.52 µM). In inhibiting the Ca2+ responses induced by acetylcholine in Neuro2a cells expressing the mouse adult α1ß1εδ nAChR or human α7 nAChR, BBIQAs1 and 2 had similar potencies to d-TC (IC50s in the range 0.75-3.08 µM). Our data suggest that BBIQA1 and BBIQA2 can inhibit adult muscle α1ß1εδ nAChR by both competitive and noncompetitive mechanisms. Further experiments on neuronal α3ß2, α4ß2, and α9α10 nAChRs, expressed in Xenopus laevis oocytes, showed that similar potencies for BBIQAs1, 2, and d-TC. With α3ß2γ2 GABAAR currents were almost completely inhibited by d-TC at a high (100 µM) concentration, but BBIQAs1 and 2 were less potent (only 40-50% inhibition), whereas in competition with Alexa Fluor 546-α-cobratoxin for binding to α1ß3γ2 GABAAR in Neuro2a cells, d-TC and these analogs had comparable affinities. Especially interesting effects of BBIQAs1 and 2 in comparison with d-TC were observed for 5-HT3AR: BBIQA1 and BBIQA2 were 5- and 87-fold less potent than d-TC (IC50 = 22.63 nM). Thus, our results reveal that these BBIQAs differ from d-TC in their potencies towards certain Cys-loop receptors, and we suggest that understanding the reasons behind this might be useful for future drug design.


Subject(s)
Benzylisoquinolines/pharmacology , Curare/chemistry , Poisons/pharmacology , Tubocurarine/pharmacology , Animals , Benzylisoquinolines/chemistry , Cell Line, Tumor , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Oocytes , Patch-Clamp Techniques , Poisons/chemistry , Radioligand Assay , Receptors, GABA-A/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Structure-Activity Relationship , Xenopus laevis
8.
J Nat Prod ; 78(11): 2537-44, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26496427

ABSTRACT

A phytochemical study of dart and arrow poison from the Matis tribe led to the identification of D-(-)-quinic acid, L-malic acid, ethyldimethylamine, magnoflorine, and five new bisbenzyltetrahydroisoquinoline alkaloids (BBIQAs), 1-5. D-Tubocurarine could not be identified among these products. BBIQA (3) contains a unique linkage at C-8 and C-11'. All structures were characterized by a combination of NMR and HRESIMS data. The effects of Matis poison and individual BBIQAs (1-3) on rat muscle nAChR expressed in Xenopus oocytes have been investigated using the two-electrode voltage clamp technique.


Subject(s)
Alkaloids/isolation & purification , Curare/isolation & purification , Tubocurarine/isolation & purification , Alkaloids/pharmacology , Animals , Curare/chemistry , Molecular Structure , Oocytes/drug effects , Poisons/pharmacology , Rats , Tubocurarine/pharmacology
9.
Rev. bras. farmacogn ; 25(2): 92-97, Mar-Apr/2015. graf
Article in English | LILACS | ID: lil-749865

ABSTRACT

Abstract A phytochemical investigation of methanol and n-hexane extracts of tuber/roots of Corynaea crassa Hook. f., Balanophoraceae, led to the isolation and characterization of β-sitosterol, lupenone, β-amyrone, lupeol, and β-amyrine. Unusual complex 1:1 mixtures of lupenone/β-amyrone and lupeol/β-amyrine obtained from the extracts were identified by NMR and HR-MS experiments. The structure of the 1:1 lupenone/β-amyrone mixture was confirmed by X-ray analysis. These triterpene ketone derivatives, only distinguished either by 5- or 6-membered E ring, co-crystallize in one common unit cell in the solid state.

SELECTION OF CITATIONS
SEARCH DETAIL
...