Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 21(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34282796

ABSTRACT

Measuring the mass flow of sugarcane in real-time is essential for harvester automation and crop monitoring. Data integration from multiple sensors should be an alternative to receive more reliable, accurate, and valuable predictions than data delivered by a single sensor. In this sense, the objective was to evaluate if the fusion of different sensors installed in a sugarcane harvester improves the mass flow prediction accuracy. A harvester was experimentally instrumented, and neural network models integrated sensor data along the harvester to perform the self-calibration of these sensors and estimate the mass flow. Nonlinear autoregressive networks with exogenous input (NARX) and multiple linear regression (MLR) models were compared to predict the mass flow. The prediction with the NARX showed a significant superiority over MLR. MLR decreases the estimated mass flow variability in the harvester. NARX with multi-sensor data has an RMSE of 0.3 kg s-1, representing a MAPE of 0.7%. The fusion of sensor signals improves prediction accuracy, with higher performance than studies with approaches that used a single sensor. The mass flow approach with multiple sensors is a potential approach to replace conventional yield monitors. The system generates accurate data with high sample density within sugarcane rows.


Subject(s)
Saccharum , Calibration , Neural Networks, Computer , Physical Phenomena
2.
Sensors (Basel) ; 21(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801058

ABSTRACT

Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling and spectral data acquisition were performed during the analysis of samples by conventional methods in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample preparation were evaluated: outer-surface ('skin') (SS), cross-sectional scanning (CSS), defibrated cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol), fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples for all prediction models. However, DF samples presented the best predictive performance values for the main sugarcane quality parameters, and required only minimal sample preparation. The results contribute to advancing the development of on-board quality monitoring in sugarcane, indicating better sampling strategies.

3.
Sensors (Basel) ; 19(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757037

ABSTRACT

Portable X-ray fluorescence (pXRF) sensors allow one to collect digital data in a practical and environmentally friendly way, as a complementary method to traditional laboratory analyses. This work aimed to assess the performance of a pXRF sensor to predict exchangeable nutrients in soil samples by using two contrasting strategies of sample preparation: pressed pellets and loose powder (<2 mm). Pellets were prepared using soil and a cellulose binder at 10% w w-1 followed by grinding for 20 min. Sample homogeneity was probed by X-ray fluorescence microanalysis. Exchangeable nutrients were assessed by pXRF furnished with a Rh X-ray tube and silicon drift detector. The calibration models were obtained using 58 soil samples and leave-one-out cross-validation. The predictive capabilities of the models were appropriate for both exchangeable K (ex-K) and Ca (ex-Ca) determinations with R2 ≥ 0.76 and RPIQ > 2.5. Although XRF analysis of pressed pellets allowed a slight gain in performance over loose powder samples for the prediction of ex-K and ex-Ca, satisfactory performances were also obtained with loose powders, which require minimal sample preparation. The prediction models with local samples showed promising results and encourage more detailed investigations for the application of pXRF in tropical soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...